

TREES
Lecture 10
CS2110 - Spring 2013

Tree Overview

\square Tree: recursive data structure (similar to list)

- Each cell may have zero or more successors (children)
- Each cell has exactly one predecessor (parent) except the root, which has none
\square All cells are reachable from root
\square Binary tree: tree in which each cell can have at most two children: a left child and a right child

General tree

Not a tree

List-like tree

Tree Terminology

$\square \quad M$ is the root of this tree
$\square \quad \mathbf{G}$ is the root of the left subtree of \mathbf{M}
$\square B, H, J, N$, and S are leaves
$\square \quad \mathbf{N}$ is the left child of $\mathbf{P} ; \mathbf{S}$ is the right child
$\square \quad \mathbf{P}$ is the parent of \mathbf{N}
$\square \quad M$ and \mathbf{G} are ancestors of \mathbf{D}
$\square \quad \mathbf{P}, \mathbf{N}$, and S are descendants of W
\square Node J is at depth 2 (i.e., depth $=$ length of path from root $=$ number of edges)

$\square \quad$ Node W is at height 2 (i.e., height $=$ length of longest path to a leaf)
\square A collection of several trees is called a ...?

Class for Binary Tree Cells

Points to left subtree
Points to right subtree private T datum;

```
    private TreeCell<T> left, right;
```

 public TreeCell(T x) \{ datum = x; \}
 public TreeCell(T x, TreeCell<T> lft,
 TreeCell<T> rgt) \{
 datum \(=x\);
 left = lft;
 right = rgt;
 \}
 more methods: getDatum, setDatum,
 getLeft, setLeft, getRight, setRight
 \}
... new TreeCell<String>("hello") ...

Binary versus general tree

\square In a binary tree each node has exactly two pointers: to the left subtree, and to the right one

- Of course one or both could be null
\square In a general tree a node can have any number of child nodes
\square Very useful in some situations...
\square... one of which will be our assignments!

Class for General Tree nodes

```
class GTreeCell {
    private Object datum;
    private GTreeCell left;
    private GTreeCell sibling;
    appropriate getter and
    setter methods
}
```

- Parent node points directly only to its leftmost child
- Leftmost child has pointer to next sibling, which points to next sibling, etc.

Applications of Trees

\square Most languages (natural and computer) have a recursive, hierarchical structure
\square This structure is implicit in ordinary textual representation
\square Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
\square ASTs are easier to optimize, generate code from, etc. than textual representation
\square A parser converts textual representations to AST

Example

\square Expression grammar:
$\square \quad E \rightarrow$ integer
$\square \quad E \rightarrow(E+E)$

- In textual representation
\square Parentheses show hierarchical structure
\square In tree representation
\square Hierarchy is explicit in the structure of the tree

Text AST Representation
-34

Recursion on Trees

\square Recursive methods can be written to operate on trees in an obvious way
\square Base case
\square empty tree
\square leaf node
\square Recursive case
\square solve problem on left and right subtrees
\square put solutions together to get solution for full tree

Searching in a Binary Tree

```
public static boolean treeSearch(Object x,
    TreeCell node) {
    if (node == null) return false;
    if (node.datum.equals(x)) return true;
    return treeSearch(x, node.left) ||
    treeSearch(x, node.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

Binary Search Tree (BST)

\square If the tree data are ordered - in any subtree,

- All left descendents of node come before node
\square All right descendents of node come after node
\square This makes it much faster to search


```
public static boolean treeSearch (Object x, TreeCell node) {
    if (node == null) return false;
    if (node.datum.equals(x)) return true;
    if (node.datum.compareTo(x) > 0)
        return treeSearch(x, node.left);
    else return treeSearch(x, node.right);
}
```


Building a BST

\square To insert a new item

- Pretend to look for the item
- Put the new node in the place where you fall off the tree
\square This can be done using either recursion or iteration

\square Example
- Tree uses alphabetical order
- Months appear for insertion in calendar order

What Can Go Wrong?

Printing Contents of BST

Because of the ordering rules for a BST, it's easy to print the items in alphabetical order
\square Recursively print everything in the left subtree
\square Print the node
\square Recursively print everything in the right subtree

```
/**
* Show the contents of the BST in
* alphabetical order.
*/
public void show () {
    show(root);
    System.out.println();
}
private static void show(TreeNode node) {
    if (node == null) return;
    show(node.lchild);
    System.out.print(node.datum + " ");
    show(node.rchild);
}
```


Tree Traversals

\square "Walking" over the whole tree is a tree traversal
\square This is done often enough that there are standard names
\square The previous example is an inorder traversal

- Process left subtree
- Process node
- Process right subtree

Note: we're using this for printing, but any kind of processing can be done

- There are other standard kinds of traversals
- Preorder traversal
- Process node
- Process left subtree
- Process right subtree
- Postorder traversal
- Process left subtree
- Process right subtree
- Process node
- Level-order traversal
- Not recursive
- Uses a queue

Some Useful Methods

```
//determine if a node is a leaf
public static boolean isLeaf(TreeCell node) {
    return (node != null) && (node.left == null)
                            && (node.right == null);
}
//compute height of tree using postorder traversal
public static int height(TreeCell node) {
    if (node == null) return -1; //empty tree
    if (isLeaf(node)) return 0;
    return 1 + Math.max(height(node.left),
        height(node.right));
}
//compute number of nodes using postorder traversal
public static int nNodes(TreeCell node) {
    if (node == null) return 0;
    return 1 + nNodes(node.left) + nNodes(node.right);
}
```


Useful Facts about Binary Trees

$\square 2^{d}=$ maximum number of nodes at depth d

If height of tree is h
\square Minimum number of nodes in tree $=$ h + 1
\square Maximum number of nodes in tree $=2^{0}+2^{1}+\ldots+2^{h}=2^{h+1}-1$

Complete binary tree
\square All levels of tree down to a certain depth are completely filled

Height 2, minimum number of nodes

Tree with Parent Pointers

\square In some applications, it is useful to have trees in which nodes can reference their parents

Analog of doubly-linked lists

Things to Think About

\square What if we want to delete data from a BST?
\square A BST works great as long as it's balanced

Suffix Trees

- Given a string s, a suffix tree for s is a tree such that
- each edge has a unique label, which is a nonnull substring of s
- any two edges out of the same node have labels beginning with different characters
- the labels along any path from the root to a leaf concatenate together to give a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s
- Suffix trees can be constructed in linear time

Suffix Trees

Suffix Trees

\square Useful in string matching algorithms (e.g., longest common substring of 2 strings)
\square Most algorithms linear time
\square Used in genomics (human genome is $\sim 4 G B$)

Huffman Trees

Fixed length encoding
$197 * 2+63 * 2+40 * 2+26 * 2=652$

Huffman encoding
$197^{*} 1+63^{*} 2+40 * 3+26 * 3=521$

Huffman Compression of "Ulysses"

```
\square'' 242125 00100000 3 110
\square'e' 139496 01100101 3 000
\square't' 95660 01110100 4 1010
\square'a' 89651 01100001 4 1000
\square'o' 8888401101111 4 0111
\square'n' 78465 01101110 4 0101
\square'i' 7650501101001 4 0100
\square's' 73186 01110011 4 0011
|'h' 68625 01101000 5 11111
\square'r' 68320 01110010 5 11110
|'l' 52657 01101100 5 10111
\square'u' 32942 01110101 6 111011
\square'g' 26201 01100111 6 101101
\square'f' 25248 01100110 6 101100
\square.'.' 21361 00101110 6 011010
\square'p' 20661 01110000 6 011001
\square...
ם'7' 68 00110111 15 111010101001111
\square'/' 58 00101111 15 111010101001110
\square'X' }190101100016011000000010001
\square'&' 3 00100110 18 011000000010001010
\square'%' 3 }0010010119011000000010001011
\square'+' 2 00101011 19 0110000000100010110
\squareoriginal size 11904320
\squarecompressed size 6822151
\square42.7% compression
```


BSP Trees

\square BSP = Binary Space Partition
\square Used to render 3D images composed of polygons
\square Each node n has one polygon p as data
\square Left subtree of n contains all polygons on one side of p
\square Right subtree of n contains all polygons on the other side of p
\square Order of traversal determines occlusion!

Tree Summary

\square A tree is a recursive data structure

- Each cell has 0 or more successors (children)
\square Each cell except the root has at exactly one predecessor (parent)
\square All cells are reachable from the root
\square A cell with no children is called a leaf
\square Special case: binary tree
- Binary tree cells have a left and a right child
- Either or both children can be null
\square Trees are useful for exposing the recursive structure of natural language and computer programs

