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Recursion
2

 Arises in three forms in computer science
 Recursion as a mathematical tool for defining a function in 

terms of its own value in a simpler case

 Recursion as a programming tool.  You’ve seen this 
previously but we’ll take it to mind-bending extremes (by 
the end of the class it will seem easy!)

 Recursion used to prove properties about algorithms.  We 
use the term induction for this and will discuss it later.



Recursion as a math technique
3

 Broadly, recursion is a powerful technique for 
specifying functions, sets, and programs

 A few recursively-defined functions and programs
 factorial 
 combinations
 exponentiation (raising to an integer power)

 Some recursively-defined sets
 grammars 
 expressions
 data structures (lists, trees, ...)



Example: Sum the digits in a number
4

 E.g. sum(87012) = 2+(1+(0+(7+8))) = 18

/** return sum of digits in n, given n >= 0 */ 
public static int sum(int n) {

if (n < 10) return n;

// n has at least two digits:
// return first digit + sum of rest
return n%10 + sum(n/10);

}

sum calls itself!



Example: Is a string a palindrome?
5

 isPalindrome(“racecar”) = true
 isPalindrome(“pumpkin”) = false

/** = "s is a palindrome" */
public static boolean isPalindrome(String s) {

if (s.length() <= 1)
return true;

// s has at least 2 chars
int n= s.length()-1;
return s.charAt(0) == s.charAt(n) && isPalindrome(s.substring(1, n));

}

r a c e c a r
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Substring from 
char(1) to char(n-1)



Count the e’s in a string
6

 countEm(‘e’, “it is easy to see that this has many e’s”) = 4

 countEm(‘e’, “Mississippi”) = 0

/** = " number of times c occurs in s */
public static int countEm(char c, String s) {

if (s.length() == 0)
return 0;

// { s has at least 1 character }
if (s.charAt(0) != c)

return countEm(c, s.substring(1));

// { first character of s is c}
return 1 + countEm (c, s.substring(1));

}

Substring from 
char(1) to end



The Factorial Function  (n!)
7

 Define n! = n·(n1)·(n2)···3·2·1     
read: “n factorial”

 E.g., 3! = 3·2·1 = 6

 By convention, 0! = 1

 The function int  int that gives n! on input n 
is called the factorial function



The Factorial Function  (n!)
8

 n! is the number of permutations of n distinct 
objects
 There is just one permutation of one object.  1! = 1
 There are two permutations of two objects:  2! = 2

1 2    2 1
 There are six permutations of three objects:  3! = 6

1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

 If n > 0,  n! = n·(n  1)!



Permutations of
9

 Total number = 4·3! = 4·6 = 24:  4!

Permutations of 
non-orange blocks

Each permutation of the three non-
orange blocks gives four permutations 
when the orange block is included



Observation
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 One way to think about the task of permuting the 
four colored blocks was to start by computing all 
permutations of three blocks, then finding all ways 
to add a fourth block
 And this “explains” why the number of permutations 

turns out to be 4! 
 Can generalize to prove that the number of 

permutations of n blocks is n!



A Recursive Program
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static int fact(int n) {
if (n = = 0)

return 1;
else

return n*fact(n-1);
}

0! = 1

n! = n·(n1)!,  n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24



General Approach to Writing Recursive 
Functions
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1. Try to find a parameter, say n, such that the solution 
for n can be obtained by combining solutions to the 
same problem using smaller values of n (e.g., (n-1) in 
our factorial example)

2. Find base case(s) – small values of n for which you 
can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit 
one of the base cases    



A cautionary note
13

 Keep in mind that each instance of your recursive 
function has its own local variables

 Also, remember that “higher” instances are waiting 
while “lower” instances run

 Not such a good idea to touch global variables 
from within recursive functions
 Legal… but a common source of errors
 Must have a really clear mental picture of how 

recursion is performed to get this right!



The Fibonacci Function
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 Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n  1) + fib(n  2),  n ≥ 2

 Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

} 

two base cases!

Fibonacci (Leonardo 
Pisano) 11701240?

Statue in Pisa, Italy
Giovanni Paganucci

1863



Recursive Execution
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static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

} 

fib(4)

fib(2)

fib(0) fib(1)

Execution of fib(4):

fib(3)

fib(0) fib(1)

fib(1) fib(2)



One thing to notice
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 This way of computing the Fibonacci function is 
elegant, but inefficient

 It “recomputes” answers again and again!
 To improve speed, need to save 

known answers in a table!
 One entry per answer
 Such a table is called a cache

fib(4)

fib(2)

fib(0) fib(1)

fib(3)

fib(0) fib(1)

fib(1) fib(2)



Memoization (fancy term for “caching”)
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 Memoization is an optimization technique used to 
speed up computer programs by having function 
calls avoid repeating the calculation of results for 
previously processed inputs.
 The first time the function is called, we save result
 The next time, we can look the result up
 Assumes a “side effect free” function: The function just 

computes the result, it doesn’t change things
 If the function depends on anything that changes, must 

“empty” the saved results list



Adding Memoization to our solution

 Before:  After
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static int fib(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fib(n-2) + fib(n-1);
} 

static ArrayList<Integer> cached = 
new ArrayList<Integer>();

static int fib(int n) {
if(n < cached.size())

return cached.get(n);
int v;
if (n == 0)

v = 0;
else if (n == 1)

v = 1;
else

v = fib(n-2) + fib(n-1);
// cached[n] = fib(n).  This code makes use of the fact
// that an ArrayList adds elements to the end of the list
if(n == cached.size())

cached.add(v);
return v;

} 



Notice the development process
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 We started with the idea of recursion
 Created a very simple recursive procedure
 Noticed it will be slow, because it wastefully 

recomputes the same thing again and again
 So made it a bit more complex but gained a lot of 

speed in doing so

 This is a common software engineering pattern



Why did it work?
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 This cached list “works” because for each value of 
n, either cached.get(n) is still undefined, or has fib(n)

 Takes advantage of the fact that an ArrayList adds 
elements at the end, and indexes from 0

0 1 1 2 3

cached@BA8900, size=5

cached.get(0)=0
cached.get(1)=1 … cached.get(n)=fib(n)

Property of our code: cached.get(n) accessed after fib(n) computed



Positive Integer Powers
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 an = a·a·a···a (n times)

 Alternate description:
 a0 = 1
 an+1 = a·an

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}



A Smarter Version
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 Power computation:
 a0 = 1
 If n is nonzero and even, an = (an/2)2
 If n is odd, an = a·(an/2)2
 Java note: If x and y are integers, “x/y” returns the integer part 

of the quotient

 Example: 
 a5  =  a·(a5/2)2  =  a·(a2)2  =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!



A Smarter Version
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 … Example: 
 a5  =  a·(a5/2)2  =  a·(a2)2  =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

 What if n were larger? 
 Savings would be more significant

 This is much faster than the straightforward computation
 Straightforward computation:  n multiplications
 Smarter computation:  log(n)  multiplications



Smarter Version in Java
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 n = 0:  a0 = 1
 n nonzero and even:  an = (an/2)2

 n nonzero and odd:  an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

parameterslocal variable

The method has two parameters and a local variable
Why aren’t these overwritten on recursive calls?



How Java “compiles” recursive code
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 Key idea: 
 Java uses a stack to remember parameters and local 

variables across recursive calls
 Each method invocation gets its own stack frame

 A stack frame contains storage for
 Local variables of method
 Parameters of method
 Return info (return address and return value)
 Perhaps other bookkeeping info



Stacks
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 Like a stack of dinner plates
 You can push data on top or 

pop data off the top in a LIFO 
(last-in-first-out) fashion

 A queue is similar, except it is 
FIFO (first-in-first-out)

top element
2nd element
3rd element

...

bottom 
element

...

top-of-stack
pointer

stack grows



return info

local variables

parameters

Stack Frame
27

 A new stack frame is pushed 
with each recursive call

 The stack frame is popped 
when the method returns
 Leaving a return value (if 

there is one) on top of the 
stack

a stack frame

retval

halfPower

a, n



Example: power(2, 5)
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return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

return info

(a = ) 2
(n = ) 5
(hP = ) 4

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) 2

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1
(hP = ) 1

(retval = ) 1

(retval = ) 2

(retval = ) 4

(retval = ) 32

hP: short for halfPower



How Do We Keep Track?
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 Many frames may exist, but computation is only 
occurring in the top frame
 The ones below it are waiting for results

 The hardware has nice support for this way of 
implementing function calls, and recursion is just a 
kind of function call



Conclusion
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 Recursion is a convenient and powerful way to define 
functions

 Problems that seem insurmountable can often be solved in a 
“divide-and-conquer” fashion:
 Reduce a big problem to smaller problems of the same kind, solve 

the smaller problems

 Recombine the solutions to smaller problems to form solution for big 
problem

 Important application (next lecture): parsing



Extra slides
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 For use if we have time for one more example of 
recursion

 This builds on the ideas in the Fibonacci example



Combinations 
(a.k.a. Binomial Coefficients)

32

 How many ways can you choose r items from 
a set of n distinct elements?   (  )  “n choose r”

(  ) = number of 2-element subsets of {A,B,C,D,E}

2-element subsets containing A: 
{A,B}, {A,C}, {A,D}, {A,E}

2-element subsets not containing A: {B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

 Therefore,        =        +
 … in perfect form to write a recursive function!

(  )4
1

(  )4
2

(  )4
1 (  )4

2(  )5
2

n
r

5
2



Combinations
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= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n1

r (    )n1
r1

(  )n
n

(  )n
0

(  )0
0

(  )1
1(  )1

0

(  )2
2(  )2

1(  )2
0

(  )3
3(  )3

2(  )3
1(  )3

0

(  )4
4(  )4

3(  )4
2(  )4

1(  )4
0

1

1      1

1      2      1

1      3      3      1

1      4      6      4      1

=

Pascal’s
triangle

Can also show that               =(  )n
r

n!
r!(nr)!



Binomial Coefficients
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34

(x + y)n =        xn +       xn1y +       xn2y2 + ··· +        yn

=   xniyi(  )n
i

(  )n
n(  )n

0 (  )n
1 (  )n

2

n

i = 0

Combinations are also called binomial coefficients
because they appear as coefficients in the expansion

of the binomial power (x+y)n :



Combinations Have Two Base Cases
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 Coming up with right base cases can be tricky!
 General idea:

 Determine argument values for which recursive case 
does not apply

 Introduce a base case for each one of these

Two base cases

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n1

r (    )n1
r1

(  )n
n

(  )n
0



Recursive Program for Combinations
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static int combs(int n, int r) {   //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n1

r (    )n1
r1

(  )n
n

(  )n
0



Exercise for the reader (you!)
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 Modify our recursive program so that it caches 
results

 Same idea as for our caching version of the 
fibonacci series

 Question to ponder: When is it worthwhile to 
adding caching to a recursive function?
 Certainly not always…
 Must think about tradeoffs: space to maintain the cached 

results vs speedup obtained by having them



Something to think about
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 With fib(), it was kind of a trick to arrange that:
cached[n]=fib(n)

 Caching combinatorial values will force you to store 
more than just the answer:
 Create a class called Triple
 Design it to have integer fields n, r, v
 Store Triple objects into ArrayList<Triple> cached;
 Search cached for a saved value matching n and r
 Hint: use a foreach loop


