
09/02/2013

1

TYPE CHECKING 
AND CASTING
Lecture 5
CS2110 Spring 2013

1



09/02/2013

2

Type Checking
2

 Java compiler checks to see if your code is legal

 Today: Explore how this works
 What is Java doing?  Why

 What will Java do if it sees a problem?

 How can we help Java understand what we intended so 
that it can convert between object types?



09/02/2013

3

The need for type checking
3

 Java programs use many types
 Primitive types: int, char, long, double, ....

 Predefined class types: Integer, String, Filestream, ...

 Predefined interfaces

 New types (classes or interfaces) that you might declare



09/02/2013

4

Some easy casting situations
4

 Consider this code:
double radius, circumference;
....
circumference = 2 * Math.PI * radius * radius;

 Did a cast occur?
 ... as it turns out, no.  Java uses the type of constant (2 

in this case) appropriate to the expression, so it treated 
2 as 2.0

 Java handles such things silently and automatically



09/02/2013

5

What about this:
5

long ladderHeight;
int nSteps;
....
ladderHeight = nSteps * 11;  // Assumes 11 inch/step

 Question to think about:
 Did Java start by computing nSteps*11 using 32-bit integer 

arithmetic, then convert to a long?
 Or did Java convert nSteps to a long first?  If so, it would 

interpret 11 as a long too...
 The difference could matter: risk of an overflow



09/02/2013

6

A cast can make code predictable
6

 If we write

ladderHeight = (long)nSteps * 11;

 we can be certain that long arithmetic is used

 Note: The cast operator, a unary prefix operator, 
has priority over “*”. Sometimes you end up having 
to add extra ( )...



09/02/2013

7

Java sometimes requires a cast
7

long x;

int a;

....

a = x;

 Java forces you to explicitly cast x to int, this way:
a = (int)x;

Why does Java have this rule?

Type error; Java won’t cast long to int automatically



09/02/2013

8

Java sometimes requires a cast
8

long x;

int a;

....

a = x;

 This code doesn’t do anything illegal, but Java 
forces you to explicitly cast x to int, this way:

a = (int)x;

... Java wants to be sure you realize that some longs 
won’t fit in an int.  (64 versus 32 bits). Truncation occurs



09/02/2013

9

Casting with objects
9

 To understand how casting works for objects, need 
to understand how Java determines an object’s type

 Suppose MyLittlePony is a subclass of Toy and we 
write this code:
Toy myToy =

new MyLittlePony(“SparkleDust”, ....);

 What’s the type of myToy?

MyLittlePony@x1

MyLittlePony

MyToy

Object

myToy MyLittlePony@x1
Toy



09/02/2013

10

Static versus dynamic typing
10

[Note: Unrelated to keyword static!]

 We’re given 
Toy myToy = new MyLittlePony(“SparkleDust”, ....);

 myToy has “static” type Toy

 ... but “dynamic” or “instance”
type MyLittlePony

MyLittlePony@x1

MyLittlePony

MyToy

Object

myToy MyLittlePony@x1
Toy



09/02/2013

11

Dynamic (“runtime”) types
11

 Dynamic type of a variable: type of the object 
assigned to it —it’s in the name of the object
 myToy is a reference to an object of class MyLittlePony

 Thus the dynamic type of myToy is MyLittlePony

 Variable’s dynamic type may
change at runtime whenever a new
object is assigned to it.

MyLittlePony@x1

MyLittlePony

MyToy

Object

myToy MyLittlePony@x1
Toy



09/02/2013

12

Static (“compile time”) types
12

 The static type of a variable is the type with which 
it was declared.
 In our example, myToy was declared to be of type Toy

 Thus the static type of myToy is Toy

MyLittlePony@x1

MyLittlePony

MyToy

Object

myToy MyLittlePony@x1
Toy



09/02/2013

13

How does Java type check?
13

 Java needs to match the operators used in an 
expression to corresponding type-specific methods

 Occurs in two steps
 First, expression must pass static type-checking analysis.  
 Ideally, this would guarantee type safety, but in practice 

there are some forms of errors that can’t be sensed until 
runtime 

 Example: casting x of type Object to Toy, is not legal if the 
dynamic type of the object is String

 At runtime, the dynamic type determines the actual 
methods used to perform the requested operations



09/02/2013

14

Examples of dynamic checks
14

 Consider

Object x = something;

((Toy)x).PushTheButton(HowHard.Medium);

 ... this code is legal if x is an object that either is a Toy or 
subclasses class Toy.

 ... but is illegal for an object of type Lodging



09/02/2013

15

Casting
15

 You can treat an object as if it was anything in the 
type hierarchy above or below it.

 This include interface types: If an object implements 
an interface, you can treat it as having the type of 
that interface
 If Java senses a possible ambiguity it will force you to 

explicitly cast; otherwise it won’t complain
 But static type checking is surprisingly hard and there 

are cases that “should” be checkable that aren’t 
handled correctly just the same.   



09/02/2013

16

instanceof
16

 ob instanceof C

true if ob is not null and object ob can be cast to
class (or interface) C; false otherwise

Needed if ob is to be cast to C in order
to use fields or methods declared in
class C that are not overridden. MyLittlePony@x1

MyLittlePony

Toy

Object

This object can be cast to Object, MyToy, 
and MyLittlePony and nothing else



09/02/2013

17

Example: Lodgings and Hotels
17

 Suppose we have a list of Lodgings.  
 It will be a “generic” type, a topic we’ll explore soon

 The simplest example is a list: List<T>, as in

List<RouteNode> route = findRoute(“Ithaca”, “Miami”);

List<Lodging> lodgingOptions = new List<Lodging>();

for (RouteNode r: route)

if (r instanceof Lodging)

lodgingOptions.add( (Lodging)r );



09/02/2013

18

... we end up with a list containing
18

 Hotels and motels

 Campgrounds

 Youth hostels

 ... anything that extends class Lodging

 We could also do this for interface types, even 
though an interface is totally abstract (the methods 
lack implementations)



09/02/2013

19

Method invocations
19

 When we call a method in an object, we always get the 
implementation defined by the dynamic type of the 
object, i.e. the overriding method,  even if we are treating 
the object as an instance of another type!

 Strange case: the expression is type-checked using static 
types, but executed using dynamic types!

 To see this, consider:

myToy.pushTheButton(HowHard.Lightly);

... Will compile only if Toy has method pushTheButton



09/02/2013

20

... but now suppose that
20

 What if myToy was created using
Toy myToy = new MyLittlePony(“FeatherFluff”, ...);

Suppose MyLittlePony overrides method pushTheButton

... then myToy.PushTheButton(Lightly)
calls the method in MyLittlePony,
not the one defined in Toy!

MyLittlePony@x1

MyLittlePony

Object

myToy MyLittlePony@x1
Toy

pushTheButton()

pushTheButton()

Toy



09/02/2013

21

Operators are really methods too
21

 In Java, operators (things like +, -, *, /, %, ....) are 
actually a shorthand for invoking methods
 Oddly, however, they don’t let you overload them
 C#, which grew out of Java, does allow this

 Operator overloading can be convenient, and many 
people complain that this is a mistake in Java
 For example,  in C# you can define a method to compare 

two Toys.  Perhaps t1 < t2 if the store makes less money on 
t1 than on t2 or the store is trying to clear t2’s from 
inventory.

 There is no obvious reason Java doesn’t allow this



09/02/2013

22

... even so
22

 Everything we’ve said about methods also applies to 
operators

 For example, when you add an integer to a string:
 String s = “Sparkle ate “ + howmany “ candies”;

 Java starts by seeing String = String + int + String
 Java autoboxes the int: howmany is replaced by

new Integer(howmany).  
 Then notices that string defines a + operator 

 Integer has a toString() method, so Java invokes it
 Now we have string = (String + String) + String



09/02/2013

23

... so?
23

 ... so this helps understand exactly why the dynamic 
definition of toString() is always the one that runs if 
you write code like
System.out.println(“Why not stay at “ + place + “?”);

 Moreover, this happens even if place is of type 
Lodging or RouteNode or even object.



09/02/2013

24

Generics
24

 We briefly saw an example of a generic

List<RouteNode> route = ....
route.Add(new Hotel(“Bates Hotel”, ...));
for (RouteNode r: route)

if (r.youWillDieHere())
System.out.println(“Maybe we shouldn’t stop at “ + r);

 A generic is just a type that takes other types 
as parameters, like a “list of RouteNodes”



09/02/2013

25

Types and generics
25

 We’ll get more fancy, but can already discuss a 
point that confuses some people

 Suppose method X is declared as:
public void X(List<Object> myList) { … }

 Should it be legal to invoke X(route)?
 ... Java says no!



09/02/2013

26

Seems like a cast should work
26

 What about X((List<Object>)route)?
 Java still says no!

 It claims route can’t be converted to a List<Object>

 Why?

 ... to understand, think about what operations can 
be done on a List<Object>
 Such as, for example, 
myList.Add(new Integer(27));  // Add an object to myList



09/02/2013

27

Not every object is a RouteNode!
27

 Example illustrates frustrating limit with strong types
 In many situations, treating a List<RouteNode> object 

as a List<Object> would work perfectly well, like for 
sorting the list.

 But Java won’t allow us to do that because some 
operations might fail at runtime and Java can’t tell if 
you plan to only do the “legal” kind!

 Casting doesn’t help because the cast itself isn’t 
possible: casting is only possible if the two types are 
completely compatible



09/02/2013

28

Generics deal with this
28

 The solution is to create entire classes in which types 
can be provided as parameters

 Then we can have a method to sort lists of type T
 Like creating one version of the code for each type

 Instead of sorting a List<Object>, it sorts List<T>

 When you invoke it you specify T, e.g. RouteNode

 Very useful!



09/02/2013

29

Types that support array indexing
29

 Java, like every language, has arrays
int[]  myVector = new int[100];

double[][] my2D = new double[8][32];

 ... and you can initialize them, of course
int[] myVector = new int[] { 9, 11, 2, 5 };

 Due to the magic of automatic type inference and 
a kind of operator overload, some other kinds of 
objects can also be treated just like arrays



09/02/2013

30

But a 2D array isn’t what you expect
30

double[][] my2D = new double[10][20];

double[][] myTriangle = new double[10][];

for(int i = 0; i < 10; i++)

myTriangle[i] = new double[i];

my2D = myTriangle;

 What’s going on?
 my2D was “really” a vector of 10 pointers… each 

capable of pointing to a vector of doubles



09/02/2013

31

But a 2D array isn’t what you expect
31

 This is in contrast to languages like MatLab and C# 
where you have “true” n-dimensional arrays

 Accessed as my2D[ i ][ j ], not my2D[ i, j ]

0

1

my2D@FF89210

11.2 3.7

19.2 30.1 -9.9 3.14



09/02/2013

32

Array vs ArrayList vs HashMap (latter 
two from java.util)
 Array

 Storage is allocated
when array created; 
cannot change

 Extremely fast lookups

ArrayList (in java.util)
 An “extensible” array
 Can append or insert 

elements, access element 
i, reset to 0 length

 Lookup is slower than an 
array

 HashMap (in java.util)
 Save data indexed by 

keys
 Can look up data by its 

key
 Can get an iteration of 

the keys or values
 Storage allocated as 

needed but works best if 
you can anticipate need 
and tell it at creation 
time.



09/02/2013

33

What is an ArrayList?
33

 A pre-existing class in Java.util
ArrayList<String> myList = new ArrayList<String>();
myList.put(“apples”);
myList.put(“pears”);
System.out.println(“Fruit 0 is “ + myList.get(0));

 A list that can mimic an array 
 In Java arrays are fixed size, and this can be annoying 

(although you can “resize” them)
 ... an ArrayList has variable size
 The real underlying structure is a list of elements



09/02/2013

34

ArrayList behavior
34

 Create:  ArrayList<T> myAL = new ArrayList<T>();
 T can be any object type you wish
 But it can’t be a primitive type.  So use Integer, not int, 

Boolean, not boolean, etc.
 On the other hand, int[ ] would be legal because an 

array is an object

 An ArrayList behaves much like a normal array
 myAL.get(i) is the i‘th element, and will be of type T
 But… you can “add to the end” via myAL.put(…);
 It gets longer as you do put operations



09/02/2013

35

What is an ArrayList?
35

 myList is a generic: In this case, a List of items, 
each of which is a String (an ArrayList<String>)

 Can create an ArrayList from any type of object 
by using that object’s type in the declaration.

“Apples”

“Pears”



myList@FF89210

Can access as myList.get(0)

Can access as myList.get(1)

myList.length returns 2



09/02/2013

36

Why can’t we use “array indexing”?
36

 In many languages, array-like classes allow indexing
 It would be nice to write myAL[i] for example
 C#, which extends Java, does allow this.  The compiler 

simply translates this notation to a get or put call.

 But Java doesn’t support that, hence for ArrayList 
you need to explicitly call myAL.get(i) and myAL.put()
 Put has two overloads
 One puts something at the end: myAL.put(something)
 The other puts it at location i: myAL.put(i, something)



09/02/2013

37

How about a HashMap?
37

 Similar idea, but now the array index itself can be 
objects of any type you like
 Similar to ArrayList, you access items using method calls
 But you can think of these as mapping directly to array 

indexing even though that notation isn’t permitted

 Designed to deal with applications that often need to 
look for something in a long list

 With an Array or an ArrayList we might need to search 
the whole list, item by item, looking at values



09/02/2013

38

HashMap Example

 Create HashMap of numbers. Use names of numbers as keys:
Map<String, Integer> numbers

= new HashMap<String, Integer>();
numbers.put("one", new Integer(1));
numbers.put("three", new Integer(3));

 Retrieve a number:
Integer n = numbers.get("two"); 

Returns null if HashMap doesn’t contain key
 Can use numbers.containsKey(key) to check this



09/02/2013

39

What’s going on here?
39

 First, we’re seeing another generic:

... in words, “A fast way to index with a string and pull out 
an associated integer”

 The previous slide actually used an interface type:
Map<String, Integer> numbers 

= new HashMap<String, Integer>();
... Works because

HashMap<KT,VT> implements Map<KT,VT>

numbers = new HashMap<String, Integer>();



09/02/2013

40

... and what is a HashMap?
40

 Idea: offer super-fast lookup

 Take the key (the string)

 Compute its “hash code”

 Takes any object as an input

Outputs random-looking number computed from the object

 HashMap allocates a big vector, initially empty, and uses the 
hash code to select an entry.  Call the vector hashVec

hashVec[key.hashCode() % hashVec.length] = 

new KeyValue(key, value)

 So: a “1-step” way to find key and value.  (Collisions are 
handled automatically but no need to explain how this works)

Inherited method 
hashCode can be 
overriden



09/02/2013

41

... and what is a HashMap?
41





(“one”, 1)





(“two”, 2)

hashVec@AB89010

“one”.hashCode()%8 = 3

“two”.hashCode()%8 = 7

8 elements



09/02/2013

42

Summary
42

 Java is strongly typed, but a single object has many types
 Its declared type and type Object
 Its superclass types, and interface types it implements

 Many languages (including some very close to Java) 
extend this notion to “overloads” of operators like 
+ or – or even array indexing
 It involves implementing a special kind of interface

 Java community has pressed for this in Java too, 
but as of now, it hasn’t happened


