
SOFTWARE ENGINEERING
Lecture 4

CS2110 Spring 2013

1

... picking up where we stopped
2

 We were discussing the class hierarchy

 We had been focused on extending a class by
creating a new child class

 We looked at “overloading” methods

 Allows us to have multiple methods with the same name
but with different type signatures

 Used when some arguments have default values. The
“short” versions just call the “ultimate” one with default
values for any unspecified parameters

Interfaces

Object

Lodging

Hotel

City

A class has only one parent but can implement many interfaces.

Decide on class hierarchy and what interfaces to support as part of

process of developing clean, elegant code

Interface: “fully abstract” class listing type

signatures for fields and methods. A class

implementing the interface must define all

methods but in its own specialized way.

CampGround

. . .

Comparable

Hotel: subclass of

Lodging but also

implements interface

MapNode

3

MapNode

Example: Overriding “toString”

 Similar terms but overload and override differ

 Overload: A class with multiple methods having the

same name but different type signatures

 Override: A class that redefines some method that its

parent defined, and that it would have inherited

 Overload has nothing to do with extending a class

 Override is used only when extending a class

4

Example: Overriding “toString”

 Class Object defines toString, so every object of
every class contains toString.

 toString in Object: prints name@Address

 Most classes override toString()

 toString() in an object usually returns a string that contains
values of the fields of the object, printed in a nice way.

@Override // An “attribute”: tells Eclipse what we intend

public string toString() {

 return this.name + “:” + this.value;

}

5

Example: Overriding “toString”

 Class Object defines toString, so every object of
every class contains toString.

 toString in Object: prints name@Address

 Most classes override toString()

 toString() in an object usually returns a string that contains
values of the fields of the object, printed in a nice way.

// Putting it right into the declaration can increase clarity

public @Override string toString() {

 return this.name + “:” + this.value;

}

6

Example: Overriding “toString”

 Class Object defines toString, so every object of
every class contains toString.

 toString in Object: prints name@Address

 Most classes override toString()

 toString() in an object usually returns a string that contains
values of the fields of the object, printed in a nice way.

// If you make a mistake, now Eclipse will notice & warn you

public @Override string ToString() { // Mistake: to, not To

 return this.name + “:” + this.value;

}

7

Method ToString should override some

inherited method.

Is toString() the only use for override?
8

 This the most common use!

 But there is one other very common case

 Java has many pre-defined classes for making lists or

other kinds of collections

 It can search and sort within them

 These need a way to compare elements

 Again, there are default comparison rules but they

don’t often do exactly what you would want

Example: Overloading “compareTo”

 Interface Comparable has three methods:

 a.equals(b): returns true/false

 a.compareTo(b): returns -/0/+

 a.hashCode(): returns a number (ideally unique and

randomized) representing object a. Usually return

data.hashCode() for some data object in a that

represents a’s “value” (perhaps a string or a number)

 Warning: Override one method? Must override all.

Otherwise, get mix of inherited and override versions,

and Java utilities that depend on them malfunction

9

Accessing Overridden Methods

Suppose a class overrides method m

Like toString() in the examples we just saw

 Sometimes it is useful to be able to call the parent version.
E.g. maybe you still want to print the Name@Address using
Object.toString()

 In subclass, call overridden method using super.m()

 Example:
Public @Override String toString() {
 return super.toString() + “: “ + name + “, price=“ + price;
}
 “ns@0xAF402: Hotel Bates, price=37.50”

10

Shifting gears
11

 We’ve focused on the type hierarchy.

 Now let’s look at a different but related question:

how things get initialized in Java

 For a single object

 ... for static variables, and then for instance variables

 ... then for objects in a subclass of a parent class

 ... and then for two classes that refer to one another

Drill down: Initializing an object
12

 Questions to ask about initialization in Java:

 When do things have default values? What are those?

 What happens if you touch an uninitialized object?

 What if you need a more complicated initialization that

requires executing some code?

 Who gets initialized first in an parent/subclass

situation?

 Who gets initialized first if two different classes have

initializers that each refer to the other?

Constructors

 Called to create new instances of a class.

 A class can define multiple constructors

 Default constructor initializes all fields to default

values (0, false, null…)

class Thing {

 int val;

 Thing(int val) {

 this.val = val;

 }

 Thing() {

 this(3);

 }

Thing one = new Thing(1);

Thing two = new Thing(2);

Thing three = new Thing();

System.out.println(“Thing two = “ + two);

13

Java automatically calls two.toString()

It works: class Thing inherits Object.toString().

Won’t print value in field val [Why not?]

Constructors in class hierarchy
14

 Principle: initialize superclass fields first.

 Implementation: First statement of

constructor must be call on constructor in

this class or superclass Java syntax or is:

this(arguments); or
super(arguments);

 If you don’t do this, Java

inserts call

 super();

public class Hotel extends Lodging { … }

Hotel@xy

Object fields,

methods

Lodging fields,

methods

Hotel fields,

methods

Example
15

public class CSuper {
 public CSuper() {
 System.out.println(”CSuper constructor called.");
 }
}
public class A extends CSuper {
 public A() {
 super();
 System.out.println(“Constructor in A running.");
 }
 public static void main(String[] str) {
 ClassA obj = new ClassA();
 }
}

Prints: Csuper constructor called.

 Constructor in A running.

What arelocal variables?

 Local variable: variable declared in method body

 Not initialized, you need to do it yourself!

 Eclipse should detect these mistakes and tell you

class Thing {
 int val;

 public Thing(int val) {
 int undef;
 this.val = val + undef;
 }

 public Thing() {
 this(3);
 }
}

16

What happens here?
17

 If you access an object using a reference that has a null

in it, Java throws a NullPointerException.

 Thought problem: what did developer intend?

 Probably thinks myFriend points to an existence of class

RoomMate.

 RoomMate object created only with new-expression

class Thing {

 RoomMate myFriend;

 Thing(int val) {

 myFriend.value = val;

 }

}

Static Initializers

 An initializer for a static field runs once, when the

class is loaded

 Used to initialize static objects

class StaticInit {

 static Set<String> courses = new HashSet<String>();

 static {

 courses.add("CS 2110");

 courses.add("CS 2111");

 }

 …

}

18

Glimpse of a “generic”

Reminder: Static vs Instance Example

class Widget {

 static int nextSerialNumber = 10000;

 int serialNumber;

 Widget() { serialNumber = nextSerialNumber++; }

 public static void main(String[] args) {

 Widget a = new Widget();

 Widget b = new Widget();

 Widget c = new Widget();

 System.out.println(a.serialNumber);

 System.out.println(b.serialNumber);

 System.out.println(c.serialNumber);

 }

}

19

Accessing static versus instance fields

 If name is unique and in scope, Java knows what you are

referring to. In scope: in this object and accessible.

Just use the (unqualified) name:

 serialNumber

 nextSerialNumber

 Refer to static fields/methods in another class using name

of class

 Widget.nextSerialNumber

 Refer to instance fields/methods of another object using

name of object

 a.serialNumber

20

Hair-raising initialization
21

 Suppose a is of type A and b is of type B

 … and A has static field myAVal,

 ….and B has field myBVal.

 Suppose we have static initializers:

public static int myAVal = B.myBVal+1;

public static int myBVal = A.myAVal+1;
Eek!

Hair-raising initialization
22

 What happens depends on which class gets
loaded first. Assume program accesses A.

 Java “loads” A and initializes all its fields to 0/false/null

 Now, static initializers run. A accesses B. So Java loads B
and initializes all its fields to 0/false/null.

 Before we can access B.myBVal we need to initialize it.

 B sets myBVal = A.myAVal+1 = 0+1 = 1

 Next A sets A.myAVal = B.myBVal+1=1+1=2

 (Only lunatics write code like this
but knowing how it works is helpful)

Yuck!

Some Java « issues »

 An overriding method cannot have more restricted

access than the method it overrides

class A {

 public int m() {...}

}

class B extends A {

 private @Override int m() {...} //illegal!

}

A foo = new B(); // upcasting

foo.m(); // would invoke private method in

 // class B at runtime

23

Can we override a field?
24

 … Yes, Java allows this. There are some situations

where it might even be necessary.

 We call the technique “shadowing”

 But it isn’t normally a good idea.

… a nasty example

class A {

 int i = 1;

 int f() { return i; }

}

class B extends A {

 int i = 2; // Shadows variable i in class A.

 int @Override f() { return -i; } // Overrides method f in class A.

}

public class override_test {

 public static void main(String args[]) {

 B b = new B();

 System.out.println(b.i); // Refers to B.i; prints 2.

 System.out.println(b.f()); // Refers to B.f(); prints -2.

 A a = (A) b; // Cast b to an instance of class A.

 System.out.println(a.i); // Now refers to A.i; prints 1;

 System.out.println(a.f()); // Still refers to B.f(); prints -2;

 }

}

The “runtime” type of “a” is

“B”!

25

Shadowing

 Like overriding, but for fields instead of methods

 Superclass: variable v of some type

 Subclass: variable v perhaps of some other type

 Subclass method: access shadowed variable using super.v

 Variable references are resolved using static binding (i.e. at

compile-time), not dynamic binding (i.e. not at runtime)

 Variable reference r.v uses the static (declared) type of

variable r, not runtime type of the object referred to by r

 Shadowing is bad medicine. Don’t do it. CS2110 does not

allow it

26

… back to our nasty example

class A {

 int i = 1;

 int f() { return i; }

}

class B extends A {

 int i = 2; // Shadows variable i in class A.

 int @Override f() { return -i; } // Overrides method f in class A.

}

public class override_test {

 public static void main(String args[]) {

 B b = new B();

 System.out.println(b.i); // Refers to B.i; prints 2.

 System.out.println(b.f()); // Refers to B.f(); prints -2.

 A a = (A) b; // Cast b to an instance of class A.

 System.out.println(a.i); // Now refers to A.i; prints 1;

 System.out.println(a.f()); // Still refers to B.f(); prints -2;

 }

}

The “declared” or “static”

type of “a” is “A”!

27

Software Engineering

 The art by which we start with a problem statement

and gradually evolve a solution

 There are whole books on this topic and most

companies try to use a fairly uniform approach that

all employees are expected to follow

 The class hierarchy you design is a step in this

process

28

The software design cycle

 Some ways of turning a problem statement into a

program that we can debug and run

 Top-Down, Bottom-Up Design

 Software Process (briefly)

Modularity

 Information Hiding, Encapsulation

 Principles of Least Astonishment and “DRY”

 Refactoring

29

Top-Down Design

 Start with big picture:

 Invent abstractions at a high level

 Decomposition / “Divide and Conquer”

User

Interfac

e

Toys Inventory
Sales

Planning
Customer

Databas

e Subtypes

of Toys

Automated

Reordering

Web Toy

Demos

Cash

Register

Marketing

Subsystem

30

Not a perfect, pretty picture

 It is often easy to take the first step but not the

second one

 Large abstractions come naturally. But details often

work better from the ground up

 Many developers work by building something small,

testing it, then extending it

 It helps to not be afraid of needing to recode things

31

Top-Down vs. Bottom-Up

 Is one way better? Not really!

 It’s sometimes good to alternative

 By coming to a problem from multiple angles you might
notice something you had previously overlooked

Not the only ways to go about it

 Top-Down: harder to test early because parts
needed may not have been designed yet

 Bottom-Up: may end up needing things different
from how you built them

32

Software Process

 For simple programs, a simple process…

 But to use this process, you need to be sure that the
requirements are fixed and well understood!

 Many software problems are not like that

 Often customer refines requirements when you try to
deliver the initial solution!

“Waterfall”

33

Incremental & Iterative

 Deliver versions of system in several small cycles

 Recognizes that for some settings, software
development is like gardening

 You plant seeds… see what does well… then replace
the plants that did poorly

34

Information Hiding

 What “information” do classes hide?

“Internal” design decisions.

 Class’es interface: everything in it that is externally

accessible

public class Set {
…

 public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...

}

35

Encapsulation

 By hiding code and data behind its interface, a class

encapsulates its “inner workings”

 Why is that good?

 Can change implementation later without invalidating

the code that uses the class

class LineSegment {
 private Point2D p1, p2;
 ...
 public double length() {
 return p1.distance(p2);
 }
}

class LineSegment {
 private Point2D p;
 private double length;
 private double phi;
 ...
 public double length() {
 return length;
 }
}

36

Degenerate Interfaces

 Public fields are usually a Bad Thing:

 Anybody can change them; the class has no
control

class Set {
public int count = 0;

 public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...

}

37

Use of interfaces?

 When team builds a solution, interfaces can be

valuable!

 Rebecca agrees to implement the code to extract

genetic data from files

 Tom will implement the logic to compare DNA

 Willy is responsible for the GUI

 By agreeing on the interfaces between their

respective modules, they can all work on the

program simultaneously

38

Principle of Least Astonishment

 Interface should “hint” at its behavior

 Names and comments matter!

Bad:
 public int product(int a, int b) {
 return a*b > 0 ? a*b : -a*b;
 }

Better:

 /** Return absolute value of a * b */
 public int absProduct(int a, int b) {
 return a*b > 0 ? a*b : -a*b;
 }

39

Outsmarting yourself
40

 A useful shorthand... Instead of

 something = something * 2;

... use

 something *= 2;

 All such operators:

 += -= *= /= %= ^=

Principle of Least Astonishment

 Unexpected side effects are a Bad Thing

class MyInteger {
 private int value;
 ...
 public MyInteger times(int factor) {
 value *= factor;
 return new MyInteger(value);
 }
}
...
MyInteger i = new MyInteger(100);
MyInteger j = i.times(10);

Developer trying to be

clever. But what does

code do to i?

41

Duplication

 It is common to find some chunk of working code, make a

replica, then edit the replica

 But this makes your software fragile: later, when code you

copied needs to be revised, either

 The person doing that changes all instances, or

 some become inconsistent

 Duplication can arise in many ways:

 constants (repeated “magic numbers”)

 code vs. comment

within an object’s state

 ...

42

“DRY” Principle

 Don’t Repeat Yourself

 Nice goal: have each piece of knowledge live in

one place

 But don’t go crazy over it

 DRYing up at any cost can increase dependencies

between code

 “3 strikes and you refactor” (i.e. clean up)

43

Refactoring

 Refactor: improve code’s internal structure

without changing its external behavior

 Most of the time we’re modifying existing software

 “Improving the design after it has been written”

 Refactoring steps can be very simple:

 Other examples: renaming variables, methods, classes

public double weight(double mass) {
 return mass * 9.80665;
} static final double GRAVITY = 9.80665;

public double weight(double mass) {
 return mass * GRAVITY;
}

44

Why is refactoring good?

 If your application later gets used as part of a

Nasa mission to Mars, it won’t make mistakes

 Every place that the gravitational constant shows up

in your program a reader will realize that this is

what they are looking at

 The compiler may actually produce better code

45

Common refactorings

 Rename something

 Eclipse will do it all through your code

 Warning: Eclipse doesn’t automatically fix comments!

 Take a chunk of your code and turn it into a method

 Anytime your “instinct” is to copy lines of code from one
place in your program to another and then modify,
consider trying this refactoring approach instead...

 ... even if you have to modify this new method, there
will be just one “version” to debug and maintain!

46

Extract Method

 A comment explaining what is being done usually
indicates the need to extract a method

 One of most common refactorings

public double totalArea() {
 ...
 // add the circle
 area +=
 PI * pow(radius,2);
 ...
}

public double totalArea() {
 ...
 area += circleArea(radius);
 ...
}

private double circleArea
 (double radius) {
 return PI * pow(radius, 2);
}

47

Extract Method

 Simplifying conditionals with Extract Method Before
if (date.before(SUMMER_START) ||
 date.after(SUMMER_END)) {
 charge = quantity * winterRate + winterServiceCharge;
}
else {
 charge = quantity * summerRate;
}

After
if (isSummer(date)) {
 charge = summerCharge(quantity);
}
else {
 charge = winterCharge(quantity);
}

48

Refactoring & Tests

 Eclipse supports various refactorings

 You can refactor manually

Automated tests are essential to ensure
external behavior doesn’t change

Don’t refactor manually without
retesting to make sure you didn’t
break the code you were “improving”!

 More about tests and how to drive
development with tests next week

49

Summary

 We’ve seen that Java offers ways to build general
classes and then to created specialized versions of them

 In fact we saw several ways to do this

 Our challenge is to use this power to build clean,
elegant software that doesn’t duplicate functionality in
confusing ways

 The developer’s job is to find abstractions and use their
insight to design better code!

50

