
28/01/2013

1

SOFTWARE ENGINEERING
Lecture 4
CS2110 Spring 2013

1

... picking up where we stopped
2

 We were discussing the class hierarchy

 We had been focused on extending a class by
creating a new child class
 We looked at “overloading” methods
 Allows us to have multiple methods with the same name

but with different type signatures
 Used when some arguments have default values. The

“short” versions just call the “ultimate” one with default
values for any unspecified parameters

Interfaces

Object

Lodging

Hotel

City

A class has only one parent but can implement many interfaces.
Decide on class hierarchy and what interfaces to support as part of

process of developing clean, elegant code

Interface: “fully abstract” class listing type
signatures for fields and methods. A class
implementing the interface must define all

methods but in its own specialized way.

CampGround

. . .

Comparable

Hotel: subclass of
Lodging but also

implements interface
MapNode

3

MapNode

Example: Overriding “toString”

 Similar terms but overload and override differ
 Overload: A class with multiple methods having the

same name but different type signatures

 Override: A class that redefines some method that its
parent defined, and that it would have inherited

 Overload has nothing to do with extending a class

 Override is used only when extending a class

4

Example: Overriding “toString”

 Class Object defines toString, so every object of
every class contains toString.
 toString in Object: prints name@Address
 Most classes override toString()
 toString() in an object usually returns a string that contains

values of the fields of the object, printed in a nice way.

@Override // An “attribute”: tells Eclipse what we intend
public string toString() {

return this.name + “:” + this.value;
}

5

Example: Overriding “toString”

 Class Object defines toString, so every object of
every class contains toString.
 toString in Object: prints name@Address
 Most classes override toString()
 toString() in an object usually returns a string that contains

values of the fields of the object, printed in a nice way.

// Putting it right into the declaration can increase clarity
public @Override string toString() {

return this.name + “:” + this.value;
}

6

28/01/2013

2

Example: Overriding “toString”

 Class Object defines toString, so every object of
every class contains toString.
 toString in Object: prints name@Address
 Most classes override toString()
 toString() in an object usually returns a string that contains

values of the fields of the object, printed in a nice way.

// If you make a mistake, now Eclipse will notice & warn you
public @Override string ToString() { // Mistake: to, not To

return this.name + “:” + this.value;
}

7

Method ToString should override some
inherited method.



Is toString() the only use for override?
8

 This the most common use!

 But there is one other very common case
 Java has many pre-defined classes for making lists or

other kinds of collections

 It can search and sort within them

 These need a way to compare elements

 Again, there are default comparison rules but they
don’t often do exactly what you would want

Example: Overloading “compareTo”

 Interface Comparable has three methods:

 a.equals(b): returns true/false

 a.compareTo(b): returns -/0/+

 a.hashCode(): returns a number (ideally unique and
randomized) representing object a. Usually return
data.hashCode() for some data object in a that
represents a’s “value” (perhaps a string or a number)

 Warning: Override one method? Must override all.
Otherwise, get mix of inherited and override versions,
and Java utilities that depend on them malfunction

9

Accessing Overridden Methods

Suppose a class overrides method m
Like toString() in the examples we just saw

 Sometimes it is useful to be able to call the parent version.
E.g. maybe you still want to print the Name@Address using
Object.toString()

 In subclass, call overridden method using super.m()

 Example:
Public @Override String toString() {

return super.toString() + “: “ + name + “, price=“ + price;
}
.... “ns@0xAF402: Hotel Bates, price=37.50”

10

Shifting gears
11

 We’ve focused on the type hierarchy.

 Now let’s look at a different but related question:
how things get initialized in Java
 For a single object

 ... for static variables, and then for instance variables

 ... then for objects in a subclass of a parent class

 ... and then for two classes that refer to one another

Drill down: Initializing an object
12

 Questions to ask about initialization in Java:
 When do things have default values? What are those?

 What happens if you touch an uninitialized object?

 What if you need a more complicated initialization that
requires executing some code?

 Who gets initialized first in an parent/subclass
situation?

 Who gets initialized first if two different classes have
initializers that each refer to the other?

28/01/2013

3

Constructors

 Called to create new instances of a class.

 A class can define multiple constructors

 Default constructor initializes all fields to default
values (0, false, null…)

class Thing {
int val;
Thing(int val) {

this.val = val;
}
Thing() {

this(3);
}

Thing one = new Thing(1);
Thing two = new Thing(2);
Thing three = new Thing();
System.out.println(“Thing two = “ + two);

13

Java automatically calls two.toString()
It works: class Thing inherits Object.toString().

Won’t print value in field val [Why not?]

Constructors in class hierarchy
14

 Principle: initialize superclass fields first.

 Implementation: First statement of
constructor must be call on constructor in
this class or superclass Java syntax or is:

this(arguments); or
super(arguments);

 If you don’t do this, Java
inserts call

super();
public class Hotel extends Lodging { … }

Hotel@xy

Object fields,
methods

Lodging fields,
methods

Hotel fields,
methods

Example
15

public class CSuper {
public CSuper() {

System.out.println(”CSuper constructor called.");
}

}
public class A extends CSuper {

public A() {
super();
System.out.println(“Constructor in A running.");

}
public static void main(String[] str) {

ClassA obj = new ClassA();
}

}

Prints: Csuper constructor called.
Constructor in A running. What arelocal variables?

 Local variable: variable declared in method body

 Not initialized, you need to do it yourself!

 Eclipse should detect these mistakes and tell you
class Thing {

int val;
public Thing(int val) {

int undef;
this.val = val + undef;

}
public Thing() {

this(3);
}

}

16

What happens here?
17

 If you access an object using a reference that has a null
in it, Java throws a NullPointerException.

 Thought problem: what did developer intend?

 Probably thinks myFriend points to an existence of class
RoomMate.

 RoomMate object created only with new-expression

class Thing {
RoomMate myFriend;

Thing(int val) {
myFriend.value = val;

}
}

Static Initializers

 An initializer for a static field runs once, when the
class is loaded

 Used to initialize static objects

class StaticInit {
static Set<String> courses = new HashSet<String>();
static {

courses.add("CS 2110");
courses.add("CS 2111");

}

…
}

18

Glimpse of a “generic”

28/01/2013

4

Reminder: Static vs Instance Example

class Widget {
static int nextSerialNumber = 10000;

int serialNumber;

Widget() { serialNumber = nextSerialNumber++; }

public static void main(String[] args) {
Widget a = new Widget();
Widget b = new Widget();
Widget c = new Widget();
System.out.println(a.serialNumber);
System.out.println(b.serialNumber);
System.out.println(c.serialNumber);

}
}

19

Accessing static versus instance fields

 If name is unique and in scope, Java knows what you are
referring to. In scope: in this object and accessible.
Just use the (unqualified) name:

 serialNumber

 nextSerialNumber

 Refer to static fields/methods in another class using name
of class

 Widget.nextSerialNumber

 Refer to instance fields/methods of another object using
name of object

 a.serialNumber

20

Hair-raising initialization
21

 Suppose a is of type A and b is of type B
 … and A has static field myAVal,

 ….and B has field myBVal.

 Suppose we have static initializers:
public static int myAVal = B.myBVal+1;

public static int myBVal = A.myAVal+1;
Eek!

Hair-raising initialization
22

 What happens depends on which class gets
loaded first. Assume program accesses A.
 Java “loads” A and initializes all its fields to 0/false/null
 Now, static initializers run. A accesses B. So Java loads B

and initializes all its fields to 0/false/null.
 Before we can access B.myBVal we need to initialize it.

 B sets myBVal = A.myAVal+1 = 0+1 = 1
 Next A sets A.myAVal = B.myBVal+1=1+1=2

 (Only lunatics write code like this
but knowing how it works is helpful)

Yuck!

Some Java « issues »

 An overriding method cannot have more restricted
access than the method it overrides

class A {
public int m() {...}

}
class B extends A {

private @Override int m() {...} //illegal!
}

A foo = new B(); // upcasting
foo.m(); // would invoke private method in

// class B at runtime

23

Can we override a field?
24

 … Yes, Java allows this. There are some situations
where it might even be necessary.

 We call the technique “shadowing”

 But it isn’t normally a good idea.

28/01/2013

5

… a nasty example

class A {
int i = 1;
int f() { return i; }

}
class B extends A {

int i = 2; // Shadows variable i in class A.
int @Override f() { return -i; } // Overrides method f in class A.

}
public class override_test {

public static void main(String args[]) {
B b = new B();
System.out.println(b.i); // Refers to B.i; prints 2.
System.out.println(b.f()); // Refers to B.f(); prints -2.
A a = (A) b; // Cast b to an instance of class A.
System.out.println(a.i); // Now refers to A.i; prints 1;
System.out.println(a.f()); // Still refers to B.f(); prints -2;

}
}

The “runtime” type of “a” is
“B”!

25

Shadowing

 Like overriding, but for fields instead of methods

 Superclass: variable v of some type

 Subclass: variable v perhaps of some other type

 Subclass method: access shadowed variable using super.v

 Variable references are resolved using static binding (i.e. at
compile-time), not dynamic binding (i.e. not at runtime)

 Variable reference r.v uses the static (declared) type of
variable r, not runtime type of the object referred to by r

 Shadowing is bad medicine. Don’t do it. CS2110 does not
allow it

26

… back to our nasty example
class A {

int i = 1;
int f() { return i; }

}
class B extends A {

int i = 2; // Shadows variable i in class A.
int @Override f() { return -i; } // Overrides method f in class A.

}
public class override_test {

public static void main(String args[]) {
B b = new B();
System.out.println(b.i); // Refers to B.i; prints 2.
System.out.println(b.f()); // Refers to B.f(); prints -2.
A a = (A) b; // Cast b to an instance of class A.
System.out.println(a.i); // Now refers to A.i; prints 1;
System.out.println(a.f()); // Still refers to B.f(); prints -2;

}
}

The “declared” or “static”
type of “a” is “A”!

27

Software Engineering

 The art by which we start with a problem statement
and gradually evolve a solution

 There are whole books on this topic and most
companies try to use a fairly uniform approach that
all employees are expected to follow

 The class hierarchy you design is a step in this
process

28

The software design cycle

 Some ways of turning a problem statement into a
program that we can debug and run
 Top-Down, Bottom-Up Design

 Software Process (briefly)

Modularity

 Information Hiding, Encapsulation

 Principles of Least Astonishment and “DRY”

 Refactoring

29

Top-Down Design

 Start with big picture:

 Invent abstractions at a high level
 Decomposition / “Divide and Conquer”

User
Interfac

e

Toys Inventory
Sales

Planning
Customer
Databas

eSubtypes
of Toys

Automated
Reordering

Web Toy
Demos

Cash
Register

Marketing
Subsystem

30

28/01/2013

6

Not a perfect, pretty picture

 It is often easy to take the first step but not the
second one

 Large abstractions come naturally. But details often
work better from the ground up

 Many developers work by building something small,
testing it, then extending it
 It helps to not be afraid of needing to recode things

31

Top-Down vs. Bottom-Up

 Is one way better? Not really!
 It’s sometimes good to alternative
 By coming to a problem from multiple angles you might

notice something you had previously overlooked
Not the only ways to go about it

 Top-Down: harder to test early because parts
needed may not have been designed yet

 Bottom-Up: may end up needing things different
from how you built them

32

Software Process

 For simple programs, a simple process…

 But to use this process, you need to be sure that the
requirements are fixed and well understood!
 Many software problems are not like that
 Often customer refines requirements when you try to

deliver the initial solution!

“Waterfall”

33

Incremental & Iterative

 Deliver versions of system in several small cycles

 Recognizes that for some settings, software
development is like gardening

 You plant seeds… see what does well… then replace
the plants that did poorly

34

Information Hiding

 What “information” do classes hide?
“Internal” design decisions.

 Class’es interface: everything in it that is externally
accessible

public class Set {
…

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...
}

35

Encapsulation

 By hiding code and data behind its interface, a class
encapsulates its “inner workings”

 Why is that good?

 Can change implementation later without invalidating
the code that uses the class

class LineSegment {
private Point2D p1, p2;
...
public double length() {
return p1.distance(p2);

}
}

class LineSegment {
private Point2D p;
private double length;
private double phi;
...
public double length() {
return length;

}
}

36

28/01/2013

7

Degenerate Interfaces

 Public fields are usually a Bad Thing:

 Anybody can change them; the class has no
control

class Set {
public int count = 0;

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...
}

37

Use of interfaces?

 When team builds a solution, interfaces can be
valuable!
 Rebecca agrees to implement the code to extract

genetic data from files

 Tom will implement the logic to compare DNA

 Willy is responsible for the GUI

 By agreeing on the interfaces between their
respective modules, they can all work on the
program simultaneously

38

Principle of Least Astonishment

 Interface should “hint” at its behavior

 Names and comments matter!

Bad:
public int product(int a, int b) {

return a*b > 0 ? a*b : -a*b;
}

Better:
/** Return absolute value of a * b */
public int absProduct(int a, int b) {

return a*b > 0 ? a*b : -a*b;
}

39

Outsmarting yourself
40

 A useful shorthand... Instead of
something = something * 2;

... use
something *= 2;

 All such operators:

+= -= *= /= %= ^=

Principle of Least Astonishment

 Unexpected side effects are a Bad Thing

class MyInteger {
private int value;
...
public MyInteger times(int factor) {

value *= factor;
return new MyInteger(value);

}
}
...
MyInteger i = new MyInteger(100);
MyInteger j = i.times(10);

Developer trying to be
clever. But what does

code do to i?

41

Duplication

 It is common to find some chunk of working code, make a
replica, then edit the replica

 But this makes your software fragile: later, when code you
copied needs to be revised, either

 The person doing that changes all instances, or

 some become inconsistent

 Duplication can arise in many ways:

 constants (repeated “magic numbers”)

 code vs. comment

within an object’s state

 ...

42

28/01/2013

8

“DRY” Principle

 Don’t Repeat Yourself

 Nice goal: have each piece of knowledge live in
one place

 But don’t go crazy over it
 DRYing up at any cost can increase dependencies

between code

 “3 strikes and you refactor” (i.e. clean up)

43

Refactoring

 Refactor: improve code’s internal structure
without changing its external behavior

 Most of the time we’re modifying existing software
 “Improving the design after it has been written”
 Refactoring steps can be very simple:

 Other examples: renaming variables, methods, classes

public double weight(double mass) {
return mass * 9.80665;

} static final double GRAVITY = 9.80665;
public double weight(double mass) {
return mass * GRAVITY;

}

44

Why is refactoring good?

 If your application later gets used as part of a
Nasa mission to Mars, it won’t make mistakes

 Every place that the gravitational constant shows up
in your program a reader will realize that this is
what they are looking at

 The compiler may actually produce better code

45

Common refactorings

 Rename something
 Eclipse will do it all through your code
 Warning: Eclipse doesn’t automatically fix comments!

 Take a chunk of your code and turn it into a method
 Anytime your “instinct” is to copy lines of code from one

place in your program to another and then modify,
consider trying this refactoring approach instead...

 ... even if you have to modify this new method, there
will be just one “version” to debug and maintain!

46

Extract Method

 A comment explaining what is being done usually
indicates the need to extract a method

 One of most common refactorings

public double totalArea() {
...
// add the circle
area +=

PI * pow(radius,2);
...

}

public double totalArea() {
...
area += circleArea(radius);
...

}

private double circleArea
(double radius) {

return PI * pow(radius, 2);
}

47

Extract Method

 Simplifying conditionals with Extract MethodBefore
if (date.before(SUMMER_START) ||

date.after(SUMMER_END)) {
charge = quantity * winterRate + winterServiceCharge;

}
else {

charge = quantity * summerRate;
}

After
if (isSummer(date)) {

charge = summerCharge(quantity);
}
else {

charge = winterCharge(quantity);
}

48

28/01/2013

9

Refactoring & Tests

 Eclipse supports various refactorings

 You can refactor manually
Automated tests are essential to ensure

external behavior doesn’t change
Don’t refactor manually without

retesting to make sure you didn’t
break the code you were “improving”!

 More about tests and how to drive
development with tests next week

49

Summary

 We’ve seen that Java offers ways to build general
classes and then to created specialized versions of them
 In fact we saw several ways to do this

 Our challenge is to use this power to build clean,
elegant software that doesn’t duplicate functionality in
confusing ways

 The developer’s job is to find abstractions and use their
insight to design better code!

50

