28/01/2013

... picking up where we stopped
=
o We were discussing the class hierarchy

o We had been focused on extending a class by
creating a new child class
We looked at “overloading” methods
Allows us to have multiple methods with the same name
but with different type signatures

Used when some arguments have default values. The
“short” versions just call the “ultimate” one with default
values for any unspecified parameters

SOFTWARE ENGINEERING

Interface: “fully abstract” class listing type
|n1’e I’ches signatures for fields and methods. A class Exomple: Overrldlng “'roS’rring”
o Similar terms but overload and override differ

implementing the interface must define all
Overload: A class with multiple methods having the

methods but in its own specialized way. |
MapNode S Object same name but different type signatures
N

~, ~\

Override: A class that redefines some method that its

~—o N e " ! " .
Hotel: subclass of Ry == parent defined, and that it would have inherited
Lodging but also Lodging . e

implements interface — . . .
P M - o1 Overload has nothing to do with extending a class
apNode
@ CampGround o Override is used only when extending a class
A class has only one parent but can implement many interfaces.

Decide on class hierarchy and what interfaces to support as part of
process of developing clean, elegant code

Example: Overriding “toString” Example: Overriding “toString”

== | B

o1 Class Obiject defines toString, so every object of
every class contains toString.

toString in Object: prints name @Address
Most classes override toString()

1 Class Object defines toString, so every object of
every class contains toString.
toString in Obiject: prints name@Address
Most classes override toString()
toString() in an object usually returns a string that contains

toString() in an object usually returns a string that contains
values of the fields of the object, printed in a nice way.

values of the fields of the object, printed in a nice way.

@Override // An “attribute™: tells Eclipse what we intend

// Putting it right into the declaration can increase clarity
public string toString() {

public @Override string toString() {

return this.name + “” + this.value; return this.name + “” + this.value;

Example: Overriding “toString”

o Class Object defines toString, so every object of
every class contains toString.
toString in Object: prints name @Address

y i
Most classes ove o e o should override some

toString() in j inherited method. ntains
values e fields of the object, printed in a nice way.

'/ If you make a mistake, now Eclipse will notice & warn you
public @Override string ToString() { // Mistake: to, not To
return this.name + “” + this.value;

Example: Overloading “compareTo”

o Interface Comparable has three methods:
a.equals(b): returns true /false
a.compareTo(b): returns -/0/+

a.hashCode(): returns a number (ideally unique and
randomized) representing object a. Usually return
data.hashCode() for some data object in a that

represents a’s “value” (perhaps a string or a number)

Warning: Override one method? Must override all.
Otherwise, get mix of inherited and override versions,
and Java utilities that depend on them malfunction

Shifting gears

o We've focused on the type hierarchy.

o Now let’s look at a different but related question:
how things get initialized in Java
For a single object
... for static variables, and then for instance variables
... then for objects in a subclass of a parent class

... and then for two classes that refer to one another

28/01/2013

Is toString() the only use for override?
o This the most common use!

0 But there is one other very common case

Java has many pre-defined classes for making lists or
other kinds of collections

It can search and sort within them
These need a way to compare elements

Again, there are default comparison rules but they
don’t often do exactly what you would want

Accessing Overridden Methods

Suppose a class overrides method m
Like toString() in the examples we just saw

Sometimes it is useful to be able to call the parent version.
E.g. maybe you still want to print the Name@Address using
Obiject.toString()

In subclass, call overridden method using super.m()

o Example:

Public @Override String toString() {
return super.toString() + “: " + name + ", price=" + price;

. "ns@0xAF%02: Hotel Ba?‘t{price=3750"

Drill down: Initializing an object

o Questions to ask about initialization in Java:
When do things have default values? What are those?
What happens if you touch an uninitialized object?
What if you need a more complicated initialization that
requires executing some code?
Who gets initialized first in an parent/subclass
situation?
Who gets initialized first if two different classes have
initializers that each refer to the other?

Java automatically calls two.toString()

Constructors

Won't print value in field val [Why not?]

It works: class Thing inherits Object.toString().

0 Called to create new insfances'of a class.
0 A class can define multiple constryctors

01 Default constructor initializes all fields to default
values (0, false, null...)

class Thing {

int val;
Thing(int val) {

this.val = val; Thing one = new Thing(1);
} Thing two = new Thing(2);

Thing() { Thing three = new Thing();
this(3); System.out.println(“Thing two = @
) |
Prints: Csuper constructor called.
EX am p le Constructor in A running.

public class CSuper {
public CSuper() {

System.out.printIn("CSuper constructor called.");
}
public class A extends CSuper {
public A() {

super();
System.out.printIn(*Consructor in A running.");

}

public static void main(8tring[] str) {
ClassA obj = new ClassA();

}

What happens here?

o If you access an object using a reference that has a null
in it, Java throws a NullPointerException.

o Thought problem: what did developer intend?

Probably thinks myFriend points to an existence of class
RoomMate.

RoomMate object created only with new-expression

class Thing {
RoomMate myFriend;

Thing(int val) {
myFriend.value = val;
}

28/01/2013

Constructors in class hierarchy

o Principle: initialize superclass fields first.

Implementation: First statement of
constructor must be call on constructor in

Hotel@xy

this class or superclass Java syntax or is:

this(arguments); or Obiject fields,
super(arguments); methods
0 If you don’t do this, Java Lodging fields,
inserts call methods
super();
public class Hotel extends Lodging { ... } Hotel fields,
methods

What arelocal variables?

0 Local variable: variable declared in method body
o Not initialized, you need to do it yourself!
0 Eclipse should detect these mistakes and tell you
class Thing {
int val;
public Thing(int val) {
int undef;
this.val = val + undef;

public Thing() {
this(3);
}

Static Initializers

0 An initializer for a static field runs once, when the
class is loaded

0 Used to initialize static objects

class Staticlnit

static Set<String> courses = new HashSet ing>();
stafic

courses.add("CS 2110");

courses.add("CS 2111"); |

}

Reminder: Static vs Instance Example

class Widget {

static int nextSerialNumber = 10000;
int serialNumber;
Widget() { serialNumber = nextSerialNumber++; }
public static void main(String[] args) {
Widget a = new Widget();
Widget b = new Widget();
Widget ¢ = new Widget();
System.out.printIn(a.serialNumber);
System.out.printin(b.serialNumber);
System.out.printIn(c.serialNumber);

Hair-raising initialization

0 Suppose a is of type A and b is of type B
... and A has static field myAVval,
....and B has field myBVal.

0 Suppose we have static initializers:
public static int myAVal = B.myBVal+1;
public static int myBVal = AmyAVal+1;

Some Java « issues »

o An overriding method cannot have more restricted
access than the method it overrides

class A {
public int m() {...}

class B extends A {
private @Override int m() {...} //illegal!

}

A foo = new B(); // upcasting
foo.m(); // would invoke private method in
// class B at runtime

28/01/2013

Accessing static versus instance fields

0 If name is unique and in scope, Java knows what you are
referring to. In scope: in this object and accessible.
Just use the (unqualified) name:

serialNumber
nextSerialNumber

Refer to static fields/methods in another class using name
of class

Widget.nextSerialNumber

0 Refer to instance fields/methods of another object using
name of object

a.serialNumber

Hair-raising initialization

1 What happens depends on which class gets
loaded first. Assume program accesses A.
Java “loads” A and initializes all its fields to 0/false /null

Now, static initializers run. A accesses B. So Java loads B
and initializes all its fields to 0/false /null.

Before we can access B.myBVal we need to initialize it.
0 B sets myBVal = AmyAVal+1 = 0+1 =1
o Next A sets AmyAVal = B.myBVal+1=1+1=2

o (Only lunatics write code like this
but knowing how it works is helpful) ‘

Can we override a field?

0 ... Yes, Java allows this. There are some situations
where it might even be necessary.

o We call the technique “shadowing”

0 But it isn't normally a good idea.

... a nasty example

class A {
inti=1;
int f() { return i; }

class B extends A {
inti=2; // Shadows variable i in class A.
int @Override f() { return -i; } // Overrides method f in class A.

public class override_test {

“rontime” i
public static void main(String args[]) { The “runtime” type of “a” is

B b = new B(); B™
System.out.printin(b.i); /| Refpe€to B.i; prints 2.
System.out.printin(b.f()); efers to B.f(); prints -2.
Aa=(A)b; // Cast b to an instance of class A.

// Now refers to A.i; prints 1;
/] Still refers to B.f(); prints -2;

System.out.printin(a.i);
System.out.printin(a.f());

... back to our nasty example

class A {
inti=1;
int f() { return i; }

class B extends A {
inti=12; // Shadows variable i in class A.
int @Override f() { return -i; } |/ Overrides method f in class A.

public class override_test {

public static void main(String args]) { The “declared” or “static”

B b = new B(); type of “a” is “A’!
System.out.printin(b.i); 1l .i; prints 2.
System.out.printin(b.f()); Refers to B.f(); prints -2.
Aa=(A)b; // Cast b to an instance of class A.

// Now refers to A.i; prints 1;
/] Still refers to B.f(); prints -2;

System.out.printin(a.i);
System.out.printin(a.f());

The software design cycle
==

o Some ways of turning a problem statement into a
program that we can debug and run
u Top-Down, Bottom-Up Design
= Software Process (briefly)
= Modularity
® Information Hiding, Encapsulation
u Principles of Least Astonishment and “DRY”

u Refactoring

28/01/2013

Shadowing

o Like overriding, but for fields instead of methods
Superclass: variable v of some type
Subclass: variable v perhaps of some other type
Subclass method: access shadowed variable using super.v

Variable references are resolved using static binding (i.e. at
compile-time), not dynamic binding (i.e. not at runtime)

0 Variable reference r.v uses the static (declared) type of
variable r, not runtime type of the object referred to by r

Shadowing is bad medicine. Don’t do it. CS2110 does not
allow it

Software Engineering

o The art by which we start with a problem statement
and gradually evolve a solution

0 There are whole books on this topic and most
companies try to use a fairly uniform approach that
all employees are expected to follow

0 The class hierarchy you design is a step in this
process

Top-Down Design

o Start with big picture:

0 Invent abstractions at a high level

1 Decomposition / “Divide and Conquer”

Not a perfect, pretty picture

It is often easy to take the first step but not the
second one

Large abstractions come naturally. But details often
work better from the ground up

Many developers work by building something small,
testing it, then extending it

It helps to not be afraid of needing to recode things

Software Process
|
For simple programs, a simple process...
e 1 “Waterfall”
[} .
But to use this process, you need to be sure that the
requirements are fixed and well understood!
Many software problems are not like that
Often customer refines requirements when you try to
deliver the initial solution!
Information Hiding
| 35

What “information” do classes hide?
“Internal” design decisions.

public class Set {
pu-BIic void add(Object o) ...
public boolean contains(Object o) ...

public int size() ...

}

Class’es interface: everything in it that is externally
accessible

28/01/2013

Top-Down vs. Bottom-Up

Is one way better? Not really!
It's sometimes good to alternative
By coming to a problem from multiple angles you might
notice something you had previously overlooked
Not the only ways to go about it

Top-Down: harder to test early because parts
needed may not have been designed yet
Bottom-Up: may end up needing things different
from how you built them

Incremental & lterative

Deliver versions of system in several small cycles

Start o ————— -

T et 7 Ve
Feabureis) [y

'\\. J
N /./

i Ay
Imgament

Recognizes that for some settings, software
development is like gardening

You plant seeds... see what does well... then rep
the plants that did poorly

lace

Encapsulation
==
By hiding code and data behind its interface, a class
encapsulates its “inner workings”
Why is that good?
Can change implementation later without invalidat
the code that uses the class
class LineSegment { class LineSegment {
private Point2D p1, p2; private Point2D p;
private double length;
public double length() { private double phi;
return pl.distance(p2);
public double length() {
} return length;
}

ing

Degenerate Interfaces

Public fields are usually a Bad Thing:

class Set {
public int count = 0;

public void add(Object o) ...
public boolean contains(Object o) ...
public int size() ...

Anybody can change them; the class has no
control

28/01/2013

Use of interfaces?

When team builds a solution, interfaces can be
valuable!
Rebecca agrees to implement the code to extract
genetic data from files
Tom will implement the logic to compare DNA
Willy is responsible for the GUI
By agreeing on the interfaces between their
respective modules, they can all work on the
program simultaneously

Principle of Least Astonishment

Interface should “hint” at its behavior

Bad:
public int product(int a, int b) {
return a*b > 0 ? a*b : -a*b;
}

Better:
/** Return absolute value of a * b */
public int absProduct(int a, int b) {
return a*b > 0 ? a*b : -a*b;

Names and comments matter!

Outsmarting yourself

A useful shorthand... Instead of

something = something * 2;

.. Use

something *= 2;

All such operators:

Principle of Least Astonishment

Unexpected side effects are a Bad Thing

class MyInteger {
private int value;

.[;;Jblic MyInteger times(int factor) {
value *= factor;
return new MyInteger(value):

=

} Developer trying to be
} clever. But what does
code do to i?

MyInfeger i= yInteger(

MyInteger j = i.times(10);

Duplication

It is common to find some chunk of working code, make a
replica, then edit the replica

But this makes your software fragile: later, when code you
copied needs to be revised, either

The person doing that changes all instances, or

some become inconsistent
Duplication can arise in many ways:

constants (repeated “magic numbers”)

code vs. comment

within an object’s state

28/01/2013

“DRY” Principle
Don’t Repeat Yourself

Nice goal: have each piece of knowledge live in
one place
But don’t go crazy over it

DRYing up at any cost can increase dependencies
between code

“3 strikes and you refactor” (i.e. clean up)

Refactoring

Refactor: improve code’s internal structure

without changing its external behavior

Most of the time we're modifying existing software
“Improving the design after it has been written”
Refactoring steps can be very simple:

public double weight(double mass) {

" * 4. 80665;
return mass * 9 static final double GRAVITY = 9.80665;

public double weight(double mass) {
return mass * GRAVITY;

Other examples: renaming variables, methods, classes

Why is refactoring good?

If your application later gets used as part of a
Nasa mission to Mars, it won't make mistakes

Every place that the gravitational constant shows up
in your program a reader will realize that this is
what they are looking at

The compiler may actually produce better code

Common refactorings

Rename something
Eclipse will do it all through your code
Warning: Eclipse doesn’t automatically fix comments!

Take a chunk of your code and turn it into a method
Anytime your “instinct” is to copy lines of code from one
place in your program to another and then modify,
consider trying this refactoring approach instead...

... even if you have to modify this new method, there
will be just one “version” to debug and maintain!

Extract Method

A comment explaining what is being done usually
indicates the need to extract a method

public double totalArea() { public double totalArea() {
// add the circle ;r‘ea += circleArea(radius);
area +=

PI * pow(radius,2); }

y private double circleArea

(double radius) {
return PT * pow(radius, 2);

One of most common refactorings

Extract Method

Before
if (date.before(SUMMER_START) ||
date.after(SUMMER_END)) {
charge = quantity * winterRate + winterServiceCharge:;

else {
charge = quantity * summerRate;

After
if (isSummer(date)) {
charge = summerCharge(quantity):

else {
charge = winterCharge(quantity);
}

Refactoring & Tests

0 Eclipse supports various refactorings

o You can refactor manually
m Automated tests are essential to ensure
external behavior doesn’t change

u Don't refactor manually without
retesting to make sure you didn’t
break the code you were “improving”!

1 More about tests and how to drive
development with tests next week

xr
Xav

xxe

xaL

xu

Covuert Memes Type ta Top kel
Local Varisble ta Fild

28/01/2013

Summary

O We've seen that Java offers ways to build general
classes and then to created specialized versions of them
In fact we saw several ways to do this

o Our challenge is to use this power to build clean,
elegant software that doesn’t duplicate functionality in
confusing ways

0 The developer’s job is to find abstractions and use their
insight to design better code!

