
MORE JAVA!
Lecture 3

CS2110 Spring 2013

1

Recall from last time
2

 We were thinking about a toy store

 Everything on the shelves is a “toy”

 A toy has a price, a suggested age range, a name (it

might be different in different countries...), a weight

 Yet not all kinds of toys are the same

 A “My Little Pony” and a “GI Joe Action Figure” have

atttributes that differ

 A pony has a cute color. A GI Joe has a weapon...

Toy.java
3

 A class to capture the main features of toys. Let’s

focus on toys that all “have a button”

/** A class representing toys that have a button */

public class Toy {

 private String name; // Culture-specific name

 private int ageLow, ageHigh; // For children aged…

 public Toy(string name, int ageLow, int ageHigh) { …}

 public void pushTheButton() { …}

}

Let’s define our three methods
4

 First method is the constructor

public Toy(String name, int ageLow, int ageHigh) {

 this.name = name;

 this.ageLow = ageLow;

 this.ageHigh = ageHigh;

}

 Why this? Permits reuse of the same names for the

parameters to the constructor as for the fields.

 Not needed if same names hadn’t been reused

 this is a name for the “object in which it appears”

Use of “this”
5

/** A class representing toys that have a button

 */

public class Toy {

 private String name;

 private int ageLow, ageHigh;

 public Toy(String name, int ageLow, int ageHigh) {
 this.name = name;
 this.ageLow = ageLow;
 this.ageHigh = ageHigh;
 }

}

Rules for accessing fields
6

 For object t1,

 t1 = new Toy(“ActionWarrior”, 10, 15) creates new object
and invokes constructor for class Toy with these arguments

 t1.PushTheButton() invokes method push-button for the
instance of Toy that t1 currently points to

 Many classes define the same method a few times with
different parameters. This is called polymorphism
 t1.PushTheBottom(howHard);

 Without an object reference, Java looks for the
“closest” plausible match, from “inside to outside”.

 This is why “ageLow” resolves to the parameter ageLow,
whereas this.ageLow resolves to the instance variable.

Why didn’t Toy have a return type?
7

 The Toy constructor has no return type

Tells Java that Toy is a method for initializing new

instances of the class. Called in a new-expression

 PushTheButton has return type void

Tells Java it is a a method that does something, but

doesn’t return anything.

Instance methods
8

 PushTheButton is an “instance” method

 It appears in each object of class PushTheButton

 It “sees” the instance variables

Each Toy object has its own values for name, ageLow,

…

The instance method can access those values

Thus t1.PushTheButton() sees the values of these

variables for object t1. t2.PushTheButton() sees

values for t2.

Inherited methods
9

 In Java, every class is a subclass of some other class

 The classes we just showed you are subclasses of class
Object, which is the superclass for all objects

 Object has some methods

 toString(), Equals(), ….

 A subclass can redefine the methods it inherits
from its parent class; next lecture shows this

 Right now, t1.toString() would return a string containing
the type Toy and the name t1.

 But we could redefine toString(), e.g. to produce a string
reflecting the name of the Toy, and the age range...

Static versus instance
10

 Recall that main was static. In fact we can mark any

method or any field as static.

 static means: there is just one version shared by all

instances of this type of object

 When calling such a method or accessing such a

variable, you don’t give an object instance.

 A static method can’t “see” instance methods or fields

of an object unless you specify the object instance

Use of static: Assign an id to each toy
11

public class Toy {

 private String name;

 private int ageLow, ageHigh, myId;

 private static int nextId= 0; // first unassigned id

 public Toy(string name, int ageLow, int ageHigh) {
 this.name = name;
 this.ageLow = ageLow;
 this.ageHigh = ageHigh;

 myId = nextId++;
 }

}

Things to notice
12

 Could have written this.myId but didn’t need this

because myId was unambiguous

 myId references an instance field in current Toy object

 nextId is shared by all Toy objects

myId = nextId++;

means
myId = nextId;

nextId = nextId+1;

myId = ++nextId;

means

nextId = nextId + 1;

myId = nextId;

The idea of an « abstraction »

 Early in the exploration of computing, Von Neuman
pointed out that a sufficiently powerful digital computer
can “simulate” any other digital computer

 The computer as an infinitely specializable machine

 A computer can “compute” in novel ways

 For example, your laptop hardware has no idea what a
“file” is, or that cmm.mpeg contains “Call me maybe”

 Yet we think of the computer as knowing
that this is a music file. It understands
operations like “seek” or increase volume”

13

Computational Thinking

 With languages like Java we can express very
sophisticated “ideas” through objects

 The key is to think about the object as if it really was a
music video, or a graphical representation of the routes
from Ithaca to Key West, or a Tweet

 Object captures necessary data to represent something

 And has thing-specific operations, like “play”

 Languages to help us program in this abstracted way
have hugely amplified our power as computer scientists

14

A concrete example of abstraction

 Think about driving instructions in Google Maps.

How would you program with “routes” in Java?

 A route is basically a graph: a sequence of nodes

(locations) linked by edges (roads)

 So... We might imagine a “class” representing graphs

 It would use classes representing nodes, edges

 Graph operations like shortest path used to solve

problems like recommending the best route home

15

But wait!
16

 Nodes could be:

 Intersections, cities, hotels, motels, restaurants, gas stations,

amazingly awesome tourist attractions, places where road

construction is happening, radar detectors…

 Edges could be:

 Highways, toll roads, carpool-only express lanes, small

roads, dirt roads, one-way roads, bridges, draw-bridges,

ferries, car-trains, tunnels, seasonal roads…

 We might want a separate type for each, but how

would we write code to find a route in a map?

Google maps: Our goal

 We want to be able to write code like this:

foreach Node nd in the route

 if(nd is a Hotel, and nd has 3 or more stars)

 println(“Why not check out “ + nd + “ ?”);

 E.g. look at a route node by node, and for each node
check to see what type it is, and then print a list of the
3-star or better hotels.

 … but not the 3-star balls of twine. And road
intersections probably don’t have stars, even in Yelp!

17

Core of the dilemma
18

 On the one hand we want our route to include many

kinds of map-route nodes.

 They differ because they represent different things

 Hotels have swimming pools and bars, while road

intersections have round-abouts and traffic lights

 … and sometimes we just say “the route goes from

here, to here, to here” node by node

 … but other times, we need to be type-specific

Extending a class
19

 Java also has a feature for taking some class and
adding features to create a new class that is a
“specialized version” of it

 Called “creating a subclass” by “extending” the parent

 Very similar to the idea of implementing an interface
with one major difference

 When you extend a parent class, your class “inherits” all the
fields and methods already defined by the parent class

 You can add new ones but the old ones are available

 You can also redefine (“override”) the old ones. We’ll see
why this can be useful later

From Lodging to Hotel
20

 It would be natural for all the various “lodging”

options to share certain methods

 This way we know that every lodging on a route can

be described in the same way, checked for how

many stars it has, etc

 Then we can introduce specialized subclasses for the

subtypes of the parent type

A problem...
21

 One issue that now arises is that sometimes we want

a single object to behave like more than one kind of

parent object

 In Java this is not permitted

 Any given class “extends” just one other class

 If not specified, this will automatically be “Object”

Interfaces

 An interface is a class that defines fields and
methods but in which the methods aren’t filled in

 We specify the method names and parameter types
but omit the body – they are “abstract”

 Java allows classes to implement multiple interfaces

 As we’ll see, any class has one definition, but that
definition can implement multiple interfaces

 To implement an interface the class has to tell Java it is
going to do so, and has to implement all its methods

22

... so in Java

 We have notations to

 Create a new subtype from a parent type, overriding

its definitions if desired

 Define interfaces, and then define types that implement

those interfaces

 We’ll look closely at how these look, and work

23

Notation
24

class Hotel extends Lodging

 implements MapNode, Comparable

{

 … fields and methods specific to Hotel

 … fields and methods that implement MapNode

 … fields and methods to implement Comparable

}

What might the Lodging parent class have?

25

 Address, phone number, “how many stars”

 … basically, fields and methods that all lodgings share.

 A lodging is a place to stay, but only some of them

have bedrooms, and only some have camping sites

 So Lodging is a category covering things shared by

all forms of lodgings.

 When designing a parent class, you try and factor out

common functionality shared by the subclasses

A Hotel is a kind of lodging
26

 It has single rooms, suites, maybe a swimming pool

 Many are parts of chains like Hilton, Ramada…

 So a Hotel can be defined as a subclass of Lodging

 It would add additional fields and methods that other

kinds of lodgings don’t necessarily support

 Eg, “bed size” isn’t relevant for a campground

 Wooded/Meadow aren’t relevant for a hotel

Extending a class: Details
27

 If class B extends class A, B is a subclass of A and

A is a superclass of B.

 Subclass B can add new fields and methods.

 You can treat an object of class B as an object of class

A — it is “both at the same time”.

 E.g. a Hotel object is also a Lodging object, and all of them

are Objects. No casting is required to access parent

methods

A method inherited from a parent
28

 Suppose that you do create class Lodging. It out
will automatically support toString()

 Why? Because Lodging extends Object

 ... and the Object superclass defines toString()

 … so every kind of object inherits a toString() method!

 Of course, you might not like that version of
toString()

 By default, toString() prints name@MemoryLocation

 … but you can override toString() and replace it with a
version that generates some other kind of string, like...

“Hotel CaliforniaYou can check out any time you like, but

you can never leave.”

Extends versus implements
29

 An interface is a kind of empty class

 It defines fields and methods, but with method bodies

 Java knows the type signatures for the methods

 If a class implements an interface, it needs to “fill in

the blanks” by providing code for all interface methods

 Because those methods had no bodies, this is different than

extending a parent by adding new fields and methods, or

overriding a method defined in a parent class.

 We treat the object as if it had the Interface type

Class Hierarchy

Object

Lodging

Hotel

City

Every class (except Object) has a unique

immediate superclass, called its parent

Parent of Lodging and City and also superclass of Hotel

and CampGround (not to mention everything else)

parent and superclass of Hotel and

CampGround

subclass of Object

subclass of Lodging and

Object.

CampGround

. . .

30

Interfaces

Object

Lodging

Hotel

City

A class has only one parent in the type hierarchy, but can implement many interfaces. You make the

decision of how you want the class hierarchy to look, and what interfaces to support as part of a

process aimed at having clean, elegant code

Interfaces are “fully abstract” classes listing “type

signatures” for fields and methods. A a class implementing

the interface is required to define all of those methods but

each can define them in its own specialized way.

CampGround

. . .

Comparable

Hotel is a subclass of Lodging

but also implements the

MapNode interface

31

MapNode

Back to Google maps…

 We could say that a node is any class supporting an

interface with operations like sellsGas(), hasFood(), ...

 An edge implements an interface too: it can represent

roads, bridges, ferries but always has properties like

isTollRoad(), speedLimit(), expectedTime(timeOfDay)…

 Then we can write map code that can find a route that

includes many types of nodes and edges along it!

32

Google maps: Our goal

foreach Node nd in the route

 if(nd is a Hotel, and nd has 3 or more stars)

 println(“Why not check out “ + nd + “ ?”);

33

Google maps

 For example if Route is a a list of nodes this code could
be used to print all the possible 3-star hotels:

List<MapNode> route = map.getRoute(“San Jose”, “Ithaca”);

for(MapNode nd: route)

 if(nd instanceof Hotel && ((Hotel)nd).YelpStars >= 3)

 println(“Why not check out “ + nd + “ ?”);

 … so this code looks at each node on the route, and for
those that are hotels, prints 3-star ones

 List<MapNode> is a “generic”... we’ll discuss soon

Google maps

 For example if Route is a a list of nodes this code

could be used to print all the possible 3-star hotels:

for(MapNode nd: Route)

 if(nd instanceof Hotel && ((Hotel)nd).YelpStars >= 3)

 println(“Why not check out “ + nd + “ ?”);

 … so this code looks at each node on the route, and

for those that are hotels, prints 3-star ones

35

A “for each” loop
The type of Route might be

List<MapNode> Check that the node is a Hotel, not

something like a gas station or an

intersection

This “cast” says that we’re sure that nd refers to a Hotel and want

to treat it that way. The cast would fail if nd was some other kind

of object implementing the MapNode interface

Using the class hierarchy

 With the class hierarchy we can write very general

styles of Java code

 Programs that have some code that handles general

collections of objects that could of very different types

but that all support the same interface

 Other code might be highly specialized for just one

object type

 This flexibility helps us avoid needing to rewrite the

same code more than once

36

instanceof
37

 Operator instanceof can peer into the type of an object

 if(a instanceof Type)

 ((Type)a).someMethod();

 null instanceof Type is false

 Type is either a class name or an interface name

 Java assumes that a has its declared type.

 If this creates any ambiguity, we cast a to the appropriate type. We did
that here because not every Route node is a Hotel object.

 The cast will fail, throwing an exception, if a isn’t an object of the
desired type. For example, you can’t cast a Hotel to a CampGround
because neither is a subclass of the other in our class hierarchy.

 No cast is required if Java can unambiguously determine the method.

Overloading of Methods

 A class can have several methods of the same name

 ... each having a different parameter signature

 The parameter signature of a method is its name plus the
types of its parameters. (The return type isn’t included)

 Example: We might want two constructors for the Hotel
class, one for cheap hotels and one for fancy hotels that
have a swimming pool

 Hotel elCheapo = new Hotel(“Bates Motel”, 3);

 Hotel deluxe = new Hotel(“Miami Hilton”, 300, “pool”);

 Usually the versions with fewer parameters just call the
ones with more parameters, plugging in default values

38

Overloading is often used to support

default parameter values
39

 … this is incredibly common

 There are many settings where “fancy” users of an object
specify values for things that “basic” users might omit

 You want to specify defaults: “no swimming pool”, or “no bar”

 The best approach is to define one constructor or method
with all possible parameters. Then overload it with versions
that offer convenient subsets. They call the “real” version

 For example:

public void RingTheBell() { RingTheBell(Limply); }

public void RingTheBell(Vigor howHard) { …. }

One of the possible Vigor values

Probably an “enumerated” type

This overload has no parameters

Illustrating this idea: Overloads of “toString”

 The Object class defines the default “toString()”

 There are predefined overloads of toString() to print
the common object types: Integer, String, Double, etc.

 Java will automatically call toString() if conversion to a
string seems to be what you’ve requested, as in:

 println(“Why not check out “ + nd + “ ?”);

 This code automatically calls nd.toString(), concatenates the
result to end up with one string, then calls println()

40

