CS2110 Recitation Week 8. Hashing

Hashing: An implementation of a set. It provides O(1)
expected time for set operations

Set operations

« Make the set empty

* Add an element to the set

 Remove an element from the set

» (Qet the size of the set (number of elements 1n 1t)
« Tell whether a value 1s 1n the set

« Tell whether the set 1s empty.

Note: We work here with a set of Strings. But the
elements of the set could be anything at all; only
the “hash function” would change.

What’s wrong with using an array?

Keep set elements nld4| b|[]@78 [1@78
In b[On—l] 0 ann

.) . " b "

* Adding an element requires testing 1 " y C..
A 21 "182

whether it 1s in the array. Expected 3 | "aaa"

time O(n)

* Removing an element requires moving
elements down. Expected time O(n)

* Testing whether an element is in:

expected time O(n)

Keeping the array sorted presents its own problems.

ArrayList and Vector implemented using arrays; same problems

Solution: Let an element appear anywhere in b

Keep set elements b | [J@xy [J@xy
anywhere inb ol" abc"
A hash function says where 60 | "235"
to put an element 61 | "aaa"

In example to right:

"abc" hashes to 0 100 | "1$2"
"1$2" hashes to 100

"235" and "aaa" both hash to 60
999 "Xy"
Collision: string hashes to occupied place

Solution: Put 1n next available space

Array elements: null or of type HashEntry

/** An instance is an element in hash array */
private static class HashEntry {

public String element; //the element

public boolean isIinSet; //="elementisin set"

/** Constructor: an element that is in the set iff b */
public HashEntry(String e, boolean b) {

element= e;

isinSet= b;

HashEntry object says whether it 1s in set. To
remove an element, set field 1sInSet to false.

Hashing with linear probing

To add string "bc" to set:
int k= hashCode("bc");

We discuss hash functions later

MRS

Check elements b[k], b[k+1], ... until:
null or element containing "bc" is found

Probe: checking one element

Basic fact

int k= hashCode(s);

0 k

-1

Suppose k = hashCode(s).

Suppose s 1s 1n set.
Let b[j] be first (with wraparound) null element at or after b[k].

Then s 1s in one of elements b[k..j-1] (with wraparound)

Basic fact relies on never setting an element to null

/** Add s to this set (if not in) */ procedure add
public void add(String s) {

int k= hashCode(s);
while (b[k] = null && !b[k].element.equals(s))

k= (k-|-1) 0% b.length(); 06 (remaindel’)

if (b[k] == null) { gives wraparound
b[k]= new HashEntry(s, true);
size= size+1;
return;

h
//'s 1s in b[k] —but it may not be in the set
if (!b[k].1sInSet) {

b[k].isInSet=true;

size= size + 1;

procedure remove

/** Remove from this set (if it is in) */
public void remove(String s) {
int k= hashCode(s);
while (b[k] != null && !b[k].element.equals(s))
k= (k+1) % b.length();

if (b[k] == null || 'b[k].isInSet) ¢

return;

//'s 1s 1n b[k] and 1is 1n the set; remove 1t
b[k].isInSet= false;
size= size - I;

Load factor

If = (number of elements that are not null) / b.length

Estimate of how full array 1s:
close to 0: relatively empty Close to 1: too full

Somebody proved:

Under certain independence assumptions
(about the hash function), the average number
of probes in adding an element is 1/ (1 — If)

Array half full? Addition expected to need only 2 probes!

E.g. size 2000, 1000 elements are null.
Only 2 probes! Wow!

/** Rehash array b */ Procedure rehash
private void rehash() {

HashEntry[] oldb=b; // copy of array b

// Create a new, empty array
b= new HashEntry[nextPrime(4 * size)];
size= 0;

// Copy active elements from oldb to b
for (int 1= 0; 1 != oldb.length; 1=1+1)
if (oldb[1] !==null && oldb[i].1sInSet)
b.add(oldb[1].element);

Size of new array: first prime larger than 4 * (size of set)
Why a prime? Next slides

10

Quadratic probing

Linear probing: Look at k, k+1, k+2 ...

Clustering: because 2 strings that hash to k, k+1 have almost
same probe sequence

Instead, use quadratic probing:

b[k] Removes primary clustering
- 2
b jkﬂ] Efficient calculation:
b[k+27] (+1)2 — 12
b[k+37] = <arithmetic>
2*1 -1

Get to next probe with mult and add

Quadratic probing

b

b
b
b

:1;] o) Someone proved: If

j 1 1. Size of array is a prime
k+27] 2. Load factor<=1/2
kt37] Then

* A new element can be added
* Probe sequence never probes
same elements twice

Two facts hold for linear probing even if size is not prime.
But quadratic probing requires prime size

12

Hash function

Want a hash function that doesn’t put too many
elements at the same position.

Class String has a good hash function
s.hashCode()

The specs define it as (with n the length of s):
s[0]1*31™1 + s[1]*31"1 + . + s[n-1]

Time 1s O(n)!
Extremely long strings? Create you own hash function,
But 1t’s not easy to create a good one.

Java’s hashcode-equals contract

HashCode and equals are implemented in class Object.

HashCode 1n Object: usually implemented by
converting internal address (pointer) to an integer

General contract for HashCode:

* During an execution, c.hashCode() should consistently
return same value unless info used in calculating
c.equals(...) 1s changed

* cl.equals(c2) true? Then cl.hashCode() = ¢2.hashCode()

* cl.equls(c2) false? For best performance cl.hashCode() !=
c2.hashCode() —but not required.

Override equals? Then override hashCode
also if you are going to use it.

Summary

We presented basics of hashing, although there are a few other
ideas you should be aware of. We summarize, giving references
to the text by Carrano and elsewhere for more information.
Carrano does Hashing in Chapter 21, 523-546.

Describe basic 1dea of hashing (524-526).

* hash table (the array)

* hash function: Given search key, compute a hash code: an
integer. Integer 1s then changed (Carrano says compressed) to
be in range of hash table, usually using remainder function.

* Perfect hash function: maps each search key into a different
integer that 1s an index 1n the hash table.

* Good hash function properties: (1) minimize collisions, (2)
Be fast to compute.

15

Summary

Java hash functions: String provides hashCode function. It’s >=
0. Each wrapper class provides hashCode function for the values
that 1t wraps; for class Integer, it 1s the wrapped 1nt, so 1t can be
negative. (page 528-530).

Cryptographic hash function (visit Wikipedia). Produce a
fixed-size bit string for an arbitrary block of data such that any
change to the data will, with high probability, change the hash
value. Critical for information security applications, like digital
signatures. Not easy to come up with good ones. The widely used
MD3 Message-Digest Algorithm (by Ron Rivest of MIT)
produces a 16-byte hash value, but it has flaws.

16

Summary

Hash table size n: Best n 1s a prime > 2. Then compression of
hash code using % n provides indices that are distributed
uniformly in 0..n-1 (page 531).

Be careful with h % n: 1t not the modulus operation. If h <0, h%
nis in 1-n..0, so add n or use absolute value.

Load factor If: Ratio of number of occupied hash-table elements
to size of hash-table. Proved: for linear or quadratic probing,
under certain independence conditions, the average number of
probes 1n adding an element 1s at most 1 / (1 — If). So 1f hash
table 1s half full, only 2 probes expected! Keep it at most half full
by making bigger hash table when necessary.

Summary

Collision: Occurs when two different search keys hash and are
then compressed to same index. Two general ways to proceed:

1. Open addressing: Use
* Linear probing. Has problem of primary clustering
* Quadratic probing. Hash table size should be a prime

* With both linear and quadratic probing, don’t remove a
deleted element from hash table. It must stay there with a
flag indicating it 1s not in set.

2. Separate chaining: Entry in hash table 1s head of a linked list
of all keys that hash to same index. Takes more space but

climinates many collisions (page 539-542).

18

