
Generics with ArrayList and HashSet 	

1	

ge·ner·ic adjective \jə̇ˈnerik, -rēk\	

relating or applied to or descriptive of all members of a genus,
species, class, or group: common to or characteristic of a whole
group or class: typifying or subsuming: not specific or individual.	

	

From Wikipedia: generic programming: a style of computer
programming in which algorithms are written in terms of to-be-
specified-later types that are then instantiated when needed for
specific types provided as parameters.

In Java: Without generics, every Vector object contains a list of
elements of class Object. Clumsy	

With generics, we can have a Vector of Strings, a Vector of
Integers, a Vector of Genes. Simplifies programming, guards
against some errors	

Generics and Java’s Collection Classes	

2	

ge·ner·ic adjective \jə̇ˈnerik, -rēk\	

relating or applied to or descriptive of all members of a genus,
species, class, or group: common to or characteristic of a whole
group or class: typifying or subsuming: not specific or individual.	

	

From Wikipedia: generic programming: a style of computer
programming in which algorithms are written in terms of to-be-
specified-later types that are then instantiated when needed for
specific types provided as parameters.

In Java: Without generics, every Vector object contains a list of
elements of class Object. Clumsy	

With generics, we can have a Vector of Strings, a Vector of
Integers, a Vector of Genes. Simplifies programming, guards
against some errors	

Generics with ArrayList and HashSet 	

3	

ArrayList v= new ArrayList
();	

ArrayList@x1	

ArrayList	

Object	

defined in package java.util	

Fields that	

contain a list of objects	

(o0, o1, …, osize()-1)	

ArrayList () add(Object)	

get(int) size()	

remove(…) set(int, Object)	

…	

v	
 ArrayList@x1	

Vector	

An object of class ArrayList
contains a growable/
shrinkable list of elements
(of class Object). You can
get the size of the list, add an
object at the end, remove the
last element, get element i,
etc. More methods exist!
Look at them! 	

Generics with ArrayList and HashSet 	

4	

HashSet s= new HashSet();	

HashSet@y2	

Hashset	

Object	

Fields that	

contain a setof objects	

{o0, o1, …, osize()-1}	

HashSet() add(Object)	

contains(Object) size()	

remove(Object) 	

…	

s	
 HashSet@y2	

HashSet	

An object of class HashSet
contains a growable/
shrinkable set of elements
(of class Object). You can
get the size of the set, add an
object to the set, remove an
object, etc. More methods
exist! Look at them! 	

Don’t ask what “hash” means.
Just know that a Hash Set
object maintains a set	

Iterating over a HashSet or ArrayList	

5	

HashSet s= new HashSet();	

… code to store values in the set …	

for (Object e : s) {	

 System.out.println(c);	

}	

HashSet@y2	

HashSet	

Object	

Fields that	

contain a setof objects	

{o0, o1, …, osize()-1}	

HashSet() add(Object)	

contains(Object) size()	

remove(Object) 	

…	

s	
 HashSet@y2	

HashSet	

A loop whose body is executed
once with e being each element
of the set. Don’t know order in
which set elements processed	

Use same sort of loop to process
elements of an ArrayList in the
order in which they are in the
ArrayList .	

ArrayList to maintain list of Strings is cumbersome 	

6	

ArrayList v= new ArrayList ();	

… Store a bunch of Strings in v …	

// Get element 0, store its size in n	

ArrayList @x1	

ArrayList 	

Object	

Fields that	

contain a list of objects	

(o0, o1, …, osize()-1)	

Vector() add(Object)	

get(int) size()	

remove() set(int, Object)	

…	
v	
 ArrayList@x1	
 ArrayList 	

—Only Strings, nothing else	

String ob= ((String) v.get(0)).length();	

int n= ob.size(); 	

All elements of v are of type Object.	

So, to get the size of element 0, you	

first have to cast it to String.	

Make mistake, put an Integer in v?	

May not catch error for some time.	

Generics: say we want Vector of ArrayList only	

7	

API specs: ArrayList declared like this:	

public class ArrayList <E> extends AbstractList<E>���
 implements List<E> … { … }	

Means:	

Can create Vector specialized to certain class of objects:	

vs.add(3);	

vi.add(“abc”);	

These are illegal	

int n= vs.get(0).size();	

vs.get(0) has type String	

No need to cast	

ArrayList <String> vs= new ArrayList <String>(); //only Strings	

ArrayList <Integer> vi= new ArrayList <Integer>(); //only Integers	

Generics allow us to say we want Vector of Strings only	

8	

API specs: Vector declared like this:	

public class Vector<E> extends AbstractList<E>���
 implements List<E> … { … }	

Full understanding of generics is not given in this recitation.	

E.g. We do not show you how to write a generic class.	

	

Important point: When you want to use a class that is defined
like Vector above, you can write	

 Vector<C> v= new Vector<C>(…);	

to have v contain a Vector object whose elements HAVE to be of
class C, and when retrieving an element from v, its class is C.	

9	

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)	

Abstract class AbstractCollection: overrides some
abstract methods with real methods to make it
easier to fully implement Collection	

Package java.util has a bunch of classes called e
Collection Classes that make it easy to maintain sets
of values, list of values, queues, and so on. You
should spend dome time looking at their API
specifications and getting familiar with them.	

10	

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)	

Abstract class AbstractCollection: overrides some
abstract methods with methods to make it easier to
fully implement Collection	

AbstractList, AbstractQueue, AbstractSet, AbstractDeque
overrides some abstract methods of AbstractCollection with
real methods to make it easier to fully implement lists,
queues, set, and deques	

Next slide contains classes that you should become familiar
with and use. Spend time looking at their specifications.
There are also other useful Collection classes	

11	

ArrayList extends AbstractList: An object is a growable/
shrinkable list of values implemented in an array	

Arrays: Has lots of static methods for dealing with
arrays —searching, sorting, copying, etc.	

HashSet extends AbstractSet: An object maintains a
growable/shrinkable set of values using a technique called
hashing. We will learn about hashing later.	

LinkedList extends AbstractSequentialList: An object
maintains a list as a doubly linked list	

Stack extends Vector: An object maintains LIFO (last-in-
first-out) stack of objects	

Vector extends AbstractList: An object is a growable/
shrinkable list of values implemented in an array. An old
class from early Java	

Format of ArrayList object	
12	
ArrayList	

AbstractList	

AbstractCollection	

Object	

List	

Collection	

Iterable	

List	

Collection	

Iterable	
Collection	

Iterable	

Iterable
Not

discussed
today	

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)	

Abstract class AbstractCollection: overrides some
abstract methods with real methods to make it
easier to fully implement Collection	

ArrayList
implements
3 other
interfaces,
not shown	

Format of ArrayList object	
13	
Vector	

AbstractList	

AbstractCollection	

Object	

List	

Collection	

Iterable	
List	

Collection	

Iterable	
Collection	

Iterable	

Iterable
Not

discussed
today	

Interface List: abstract methods for dealing with a list
of objects (o0, …, on-1). Examples: arrays, Vectors	

Abstract class AbstractList: overrides some
abstract methods with real methods to make it
easier to fully implement List	

Homework:
Look at API
specifications
and build
diagram giving
format of
HashSet	

Parsing Arithmetic Expressions	

14	

We show you a real grammar for arithmetic expressions with
integer operands; operations +, -, *, /; and parentheses (). It
gives precedence to multiplicative operations.	

We write a recursive descent parser for the grammar and have
it generate instructions for a stack machine (explained later).
You learn about infix, postfix, and prefix expressions.	

Introduced in lecture briefly, to show use of grammars and
recursion. Done more thoroughly and carefully here.	

Historical note: Gries wrote the first text on compiler writing, in
1971. It was the first text written/printed on computer, using a
simple formatting application. It was typed on punch cards. You
can see the cards in the Stanford museum; visit
infolab.stanford.edu/pub/voy/museum/pictures/display/floor5.htm	

Parsing Arithmetic Expressions	

15	

-5 + 6 Arithmetic expr in infix notation	

5 – 6 + Same expr in postfix notation	

	

	

infix: operation between operands	

postfix: operation after operands	

prefix: operation before operands	

PUSH 5	

NEG	

PUSH 6	

ADD	

Corresponding machine language for a “stack
machine”:	

PUSH: push value on stack	

NEG: negate the value on top of stack	

ADD: Remove top 2 stack elements, push their	

 sum onto stack	

Infix requires parentheses. Postfix doesn’t	

16	

(5 + 6) * (4 – 3) Infix	

5 6 + 4 3 - * Postfix	

5 + 6 * 3 Infix 	

5 6 3 * + Postfix	

	

	

Math convention: *
has precedence over
+. This convention
removes need for
many parentheses 	

Task: Write a parser for conventional arithmetic
expressions whose operands are ints.	

1.  Need a grammar for expressions, which defines

legal arith exps, giving precedence to * / over + -	

2.  Write recursive procedures, based on grammar, to

parse the expression given in a String. Called a
recursive descent parser	

Grammar	

17	

Use 3 syntactic categories: <Exp>, <Term>, <Factor>	

A <Factor> has one of 3 forms:	

 1. integer	

 2. – <Factor>	

 3. (<Exp>)	

Show “syntax trees” for	

3 – – 5 – (3 + 2) 	

<Factor>	

3	

<Factor>	

5	
–	

<Factor>	

–	

3 + 2	

<Factor>	

)	
(

<Factor>	

–	

<Exp>	

Haven’t

shown
<Exp>

grammar
yet	

<Factor> ::= int	

 | <Factor>	

 | (<Exp>)	

Grammar	

18	

Use 3 syntactic categories: <Exp>, <Term>, <Factor>	

A <Term> is:	

 <Factor> followed by 0 or more occurs. of multop <Factor>	

where multop is * or / 	

<Term> ::= <Factor> { {* | /}1 <Factor> }	

3 * (5 + 2) * 6	

<Factor>	

<Term>	

<Factor>	

<Exp>	

<Factor>	

Means: 0 or 1 occurrences of * or /	

Means: 0 or more
occurrences of
thing inside { }	

Grammar	

19	

Use 3 syntactic categories: <Exp>, <Term>, <Factor>	

A <Exp> is:	

 <Term> followed by 0 or more occurrences of addop <Term>	

where addop is + or - 	

3 + (5 + 2) _ 6	

<Factor>	

<Exp>	

<Term>	

<Factor>	
 <Factor>	

<Exp> ::= <Term> { {+ | -}1 <Term> }	

<Term>	
<Term>	

20	

Initialized to a String that contains an arithmetic expression.	

Delivers the tokens in the String, one at a time	

Class Scanner	

Expression: 3445*(20 + 16)	

Tokens:	

3445	

*	

(

20	

+	

16	

)	

	

All parsers use a scanner,
so they do not have to
deal with the input
character by character
and do not have to deal
with whitespace	

21	

An instance provides tokens from a string, one at a time.	

 A token is either	

 1. an unsigned integer,	

 2. a Java identifier	

 3. an operator + - * / %	

 4. a paren of some sort: () [] { }	

 5. any seq of non-whitespace chars not included in 1..4. 	

Class Scanner	

public Scanner(String s) // An instance with input s	

public boolean hasToken() // true iff there is a token in input	

public String token() // first token in input (null if none)	

public String scanOverToken() // remove first token from input	

 // and return it (null if none)	

public boolean tokenIsInt() // true iff first token in input is int	

public boolean tokenIsId() // true iff first token in input is a	

 // Java identifier	

22	

/** scanner's input should start with a <Factor>	

 —if not, throw a RuntimeException.	

 Return the postfix instructions for <Factor>	

 and have scanner remove the <Factor> from its input.	

 <Factor> ::= an integer 	

 | – <Factor> 	

 | (<Expr>) */	

 public static String parseFactor(Scanner scanner)	

The spec of every parser method for a grammatical entry is
similar. It states	

1.  What is in the scanner when paring method is called	

2.  What the method returns.	

3.  What was removed from the scanner during parsing. 	

Parser for ���
<Factor>	

23	

/** scanner's input should start with an <Exp> 	

 --if not throw a RuntimeException.	

 Return corresponding postfix instructions	

 and have scanner remove the <Exp> from its input.	

 <Exp> := <Term> { {+ or -}1 <Term>} */	

 public static String parseExp(Scanner scanner) {	

 String code= parseTerm(scanner);	

 while ("+".equals(scanner.token()) || 	

 "-".equals(scanner.token())) {	

 String op= scanner.scanOverToken();	

 String rightOp= parseTerm(scanner);	

 code= code + rightOp + 	

 (op.equals("+") ? "PLUS\n" : "MINUS\n");	

 }	

 return code;	

 }	

Parser for ���
<Exp>	

