
CLOUD COMPUTING

Lecture 27: CS 2110 Fall 2013

Computing has evolved...

 Fifteen years ago: desktop/laptop + clusters

 Then

 Web sites

 Social networking sites with photos, etc

 Cloud computing systems

 Cloud computing model:

2

Styles of cloud computing

 Supporting Facebook or Google+ (“System as a

service” or SaaS)

 Cornell’s email and registrar system (“Platform as a

service” or PaaS model)

 Rent a big pile of machines for a period of time like

Netflix does (“Infrastructure as a service” – IaaS)

3

Main elements

 Client computer (runs a web-enabled application,

which could be in Java or could be a browser)

 The Internet (network links, routers, caching, etc)

 Massive back-end databases

4

Example: Facebook image “stack”

 Role is to serve images (photos, videos) for FB’s

hundreds of millions of active users

 About 80B large binary objects (“blob”) / day

 FB has a huge number of big and small data centers

 “Point of presense” or PoP: some FB owned equipment

normally near the user

 Akamai: A company FB contracts with that caches images

 FB resizer service: caches but also resizes images

 Haystack: inside data centers, has the actual pictures (a

massive file system)

5

Facebook “architecture”

 Think of Facebook as a giant distributed HashMap

 Key: photo URL (id, size, hints about where to find it...)

 Value: the blob itself

6

Facebook traffic for a week

 Client activity varies daily....

 ... and different photos have very different

popularity statistics

7

Facebook’s goals?

 Get those photos to you rapidly

 Do it cheaply

 Build an easily scalable infrastructure

 With more users, just build more data centers

 ... they do this using ideas we’ve seen in cs2110!

8

Best ways to cache this data?

 Core idea: Build a distributed photo cache (like a

HashMap, indexed by photo URL)

 Core issue: We could cache data at various places

 On the client computer itself, near the browser

 In the PoP

 In the Resizer layer

 In front of Haystack

 Where’s the best place to cache images?

 Answer depends on image popularity...

9

Distributed Hash Tables

 It is easy for a program on biscuit.cs.cornell.edu to

send a message to a program on “jam.cs.cornell.edu”

 Each program sets up a “network socket

 Each machine has an IP address, you can look them up

and programs can do that too via a simple Java utility

 Pick a “port number” (this part is a bit of a hack)

 Build the message (must be in binary format)

 Java utils has a request

10

Distributed Hash Tables

 It is easy for a program on biscuit.cs.cornell.edu to

send a message to a program on “jam.cs.cornell.edu”

 ... so, given a key and a value

1. Hash the key

2. Find the server that “owns” the hashed value

3. Store the key,value pair in a “local” HashMap there

 To get a value, ask the right server to look up key

11

Distributed Hash Tables
12

dht.Put(“ken”,2110)

(“ken”, 2110)

dht.Get(“ken”)

“ken”.hashcode()%N=77

123.45.66.781 123.45.66.782 123.45.66.783 123.45.66.784

hashmap kept by

123.45.66.782

“ken”.hashcode()%N=77

Facebook cache effectiveness

 Existing caches are very effective...

 ... but different layers are more effective for

images with different popularity ranks

13

Facebook cache effectiveness

 Each layer should

“specialize” in

different content.

 Photo age strongly

predicts effectiveness

of caching

14

Hypothetical changes to caching?

 We looked at the idea

of having Facebook

caches collaborate at

national scale…

 … and also at how to

vary caching based on the

“busyness” of the client

15

Social networking effect?

 Hypothesis: caching will work best for photos

posted by famous people with zillions of followers

 Actual finding: not really

16

Locality?

 Hypothesis: FB probably serves photos from close to

where you are sitting

 Finding: Not really...

 … just the same, if

the photo exists, it

finds it quickly

17

Can one conclude anything?

 Learning what patterns of access arise, and how

effective it is to cache given kinds of data at

various layers, we can customize cache strategies

 Each layer can look at an image and ask “should I

keep a cached copy of this, or not?”

 Smart decisions Facebook is more effective!

18

Strategy varies by layer

 Browser should cache less popular content but not

bother to cache the very popular stuff

 Akamai/PoP layer should cache the most popular

images, etc...

 We also discovered that some layers should

“cooperatively” cache even over huge distances

 Our study discovered that if this were done in the

resizer layer, cache hit rates could rise 35%!

19

Overall picture in cloud computing

 Facebook example illustrates a style of working

 Identify high-value problems that matter to the

community because of the popularity of the service, the

cost of operating it, the speed achieved, etc

 Ask how best to solve those problems, ideally using

experiments to gain insight

 Then build better solutions

 Let’s look at another example of this pattern

20

HIGH ASSURANCE

DISTRIBUTED COMPUTING

Using Isis2: isis2.codeplex.com

21

High assurance cloud computing

 Ken’s research on Isis2 system

 Today’s cloud isn’t very effective for supporting

applications that need strong guarantees

 Goal: create a cloud infrastructure that helps people

build applications that can sensitive data/problems

 Target settings:

 Smart electric power grid

 Medical devices for

ambulatory patients

22

 Soldiers in on the front lines

 Self-driving cars

Isis2 System

 Elasticity (sudden scale changes)

 Potentially heavily loads

 High node failure rates

 Concurrent (multithreaded) apps

 Long scheduling delays, resource contention

 Bursts of message loss

 Need for very rapid response times

 Community skeptical of “assurance properties”

 New C# library (but callable from any .NET

language) offering replication techniques for cloud

computing developers

 Intended to be as easy to use as a GUI framework

 Research challenges: many hard problems...

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

 Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

 g.Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.

State transfer isn’t shown

 Then can multicast, query.

Runtime callbacks to the

“delegates” as events arrive

 Easy to request security

(g.SetSecure), persistence

 “Consistency” model dictates the

ordering aseen for event upcalls

and the assumptions user can

make

24

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

 Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

 g.Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.

State transfer isn’t shown

 Then can multicast, query.

Runtime callbacks to the

“delegates” as events arrive

 Easy to request security

(g.SetSecure), persistence

 “Consistency” model dictates the

ordering seen for event upcalls

and the assumptions user can

make

25

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

 Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

 Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a

member. State transfer isn’t

shown

 Then can multicast, query.

Runtime callbacks to the

“delegates” as events arrive

 Easy to request security

(g.SetSecure), persistence

 “Consistency” model dictates the

ordering seen for event upcalls

and the assumptions user can

make

26

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

 Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

 Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.

State transfer isn’t shown

 Then can multicast, query.

Runtime callbacks to the

“delegates” as events arrive

 Easy to request security

(g.SetSecure), persistence

 “Consistency” model dictates the

ordering seen for event upcalls

and the assumptions user can make

27

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

 Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

 g.Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.

State transfer isn’t shown

 Then can multicast, query.

Runtime callbacks to the

“delegates” as events arrive

 Easy to request security

(g.SetSecure), persistence

 “Consistency” model dictates the

ordering seen for event upcalls

and the assumptions user can make

28

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

 Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

 g.Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.

State transfer isn’t shown

 Then can multicast, query. Runtime

callbacks to the “delegates” as

events arrive

 Easy to request security

(g.SetSecure), persistence

 “Consistency” model dictates the

ordering seen for event upcalls

and the assumptions user can

make

29

Example: Parallel search

 With n programs in the

group we get a

possible n-fold

speedup for our query

 The service lives “in the

cloud”. This one runs

on 4 machines

Replies = g.Query(ALL, LOOKUP, “Name=*Smith”);

Here we use LINQ which

is the C# analog of JQL

(LINQ came first)

Time

Consitency model: How users “think” about Isis2

31

 Virtual synchrony is a “consistency” model:

 Membership epochs: begin when a new configuration is installed and

reported by delivery of a new “view” and associated state

 Protocols run “during” a single epoch: rather than overcome failure, we

reconfigure when a failure occurs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution

A=3 B=7 B = B-A A=A+1

The system itself is a “community”

 Isis2 is complex and concurrent... many interacting

component parts that operate in concert

Isis2 user

object

Isis2 user

object
Isis2 user

object

Isis2

library Group instances and multicast protocols

Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay) Dr. Multicast Security

Reliable Sending Fragmentation Security

Sense Runtime Environment
Self-stabilizing

Bootstrap Protocol Socket Mgt/Send/Rcv

Send

CausalSend

OrderedSend

SafeSend

Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group

members

Use cases? The first Isis was used for...

 The New York Stock Exchange

 The French Air Traffic Control System

 The US Navy AEGIS warship

33

We’re using Isis2 in the “Smart Grid”
34

 The Smart Power grid!

Summary

 The OO Java ideas we’ve learned matter!

 The code people write at Facebook, or create

using Isis2, is very familiar looking

 Not much harder than writing a GUI!

 Cornell has a great cloud computing group working

on all sorts of cutting-edge questions

35

