
20/11/2013

1

Lecture 21 – CS2110 – Fall 2013

RACE CONDITIONS AND
SYNCHRONIZATION

Reminder

 A “race condition” arises if two threads try and
share some data

 One updates it and the other reads it, or both
update the data

 In such cases it is possible that we could see the data
“in the middle” of being updated
 A “race condition”: correctness depends on the update

racing to completion without the reader managing to
glimpse the in-progress update

 Synchronization (aka mutual exclusion) solves this

2

Java Synchronization (Locking)
3

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

Java Synchronization (Locking)
4

public void doSomething() {
synchronized (this) {

...
}

}

public synchronized void doSomething() {
...

}

•You can lock on any object, including this

is equivalent to

How locking works

 Only one thread can “hold” a lock at a time
 If several request the same lock, Java somehow decides

which will get it

 The lock is released when the thread leaves the
synchronization block
 synchronized(someObject) { protected code }

 The protected code has a mutual exclusion guarantee:
At most one thread can be in it

 When released, some other thread can acquire the
lock

5

Locks are associated with objects

 Every Object has its own built-in lock
 Just the same, some applications prefer to create

special classes of objects to use just for locking

 This is a stylistic decision and you should agree on it
with your teammates or learn the company policy if you
work at a company

 Code is “thread safe” if it can handle multiple
threads using it… otherwise it is “unsafe”

6

20/11/2013

2

Visualizing deadlock
7

Process
A

Process
B

X
Y

A has a lock on X
wants a lock on Y

B has a lock on Y
wants a lock on X

Deadlocks always involve cycles

 They can include 2 or more threads or processes in
a waiting cycle

 Other properties:
 The locks need to be mutually exclusive (no sharing of

the objects being locked)

 The application won’t give up and go away (no timer
associated with the lock request)

 There are no mechanisms for one thread to take locked
resources away from another
thread – no “preemption”

8

“... drop that mouse or
you’ll be down to 8 lives”

Dealing with deadlocks

 We recommend designing code to either
 Acquire a lock, use it, then promptly release it, or

 ... acquire locks in some “fixed” order

 Example, suppose that we have objects a, b, c, ...

 Now suppose that threads sometimes lock sets of
objects but always do so in alphabetical order
 Can a lock-wait cycle arise?

 ... without cycles, no deadlocks can occur!

9

Higher level abstractions

 Locking is a very low-level way to deal with
synchronization
 Very nuts-and-bolts

 So many programmers work with higher level
concepts. Sort of like ADTs for synchronization
 We’ll just look at one example today

 There are many others; take cs4410 to learn more

10

A producer/consumer example

 Thread A produces loaves of bread and puts them
on a shelf with capacity K
 For example, maybe K=10

 Thread B consumes the loaves by taking them off
the shelf
 Thread A doesn’t want to overload the shelf

 Thread B doesn’t wait to leave with empty arms

11

producer shelves consumer

Producer/Consumer example
12

class Bakery {
int nLoaves = 0; // Current number of waiting loaves
final int K = 10; // Shelf capacity

public synchronized void produce() {
while(nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {
while(nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall(); // Signal: shelf not full

}
}

20/11/2013

3

Things to notice

 Wait needs to wait on the same object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

 Notify wakes up just one waiting thread, notifyall
wakes all of them up

 We used a while loop because we can’t predict
exactly which thread will wake up “next”

13

Bounded Buffer

 Here we take our producer/consumer and add a
notion of passing something from the producer to
the consumer
 For example, producer generates strings

 Consumer takes those and puts them into a file

 Question: why would we do this?
 Keeps the computer more steadily busy

14

Producer/Consumer example
15

class Bakery {
int nLoaves = 0; // Current number of waiting loaves
final int K = 10; // Shelf capacity

public synchronized void produce() {
while(nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {
while(nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall(); // Signal: shelf not full

}
}

Bounded Buffer example
16

class BoundedBuffer<T> {
int putPtr = 0, getPtr = 0; // Next slot to use
int available = 0; // Items currently available
final int K = 10; // buffer capacity
T[] buffer = new T[K];

public synchronized void produce(T item) {
while(available == K) this.wait(); // Wait until not full
buffer[putPtr++ % K] = item;
++available;
this.notifyall(); // Signal: not empty

}

public synchronized T consume() {
while(available == 0) this.wait(); // Wait until not empty
--available;
T item = buffer[getPtr++ % K];
this.notifyall(); // Signal: not full
return item;

}
}

In an ideal world…

 Bounded buffer allows producer and consumer to
both run concurrently, with neither blocking
 This happens if they run at the same average rate

 … and if the buffer is big enough to mask any brief
rate surges by either of the two

 But if one does get ahead of the other, it waits
 This avoids the risk of producing so many items that we

run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

17

Trickier example

 Suppose we want to use locking in a BST
 Goal: allow multiple threads to search the tree

 But don’t want an insertion to cause a search thread to
throw an exception

18

20/11/2013

4

Code we’re given is unsafe
19

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get(Object goal) {

if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {

if(name.equals(goal)) { this.value = value; return; }
if(name.compareTo(goal) < 0) {

if(left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if(right == null) { right = new BST(goal, value); return; }
right.put(goal, value);

}
}

}

Attempt #1

 Just make both put and get synchronized:
 public synchronized Object get(…) { … }

 public synchronized void put(…) { … }

 Let’s have a look….

20

Safe version: Attempt #1
21

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public synchronized Object get(Object goal) {

if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, object value) {

if(name.equals(goal)) { this.value = value; return; }
if(name.compareTo(goal) < 0) {

if(left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if(right == null) { right = new BST(goal, value); return; }
right.put(goal, value);

}
}

}

Attempt #1

 Just make both put and get synchronized:
 public synchronized Object get(…) { … }

 public synchronized void put(…) { … }

 This works but it kills ALL concurrency
 Only one thread can look at the tree at a time

 Even if all the threads were doing “get”!

22

Visualizing attempt #1
23

Cathy
cd4

Freddy
netid: ff1

Martin
mg8

Andy
am7

Zelda
za7

Darleen
dd9

Ernie
gb0

Put(Ernie, eb0)
Get(Martin)… must

wait!
Get(Martin)…

resumes

Attempt #2

 put uses synchronized in method declaration
 So it locks every node it visits

 get tries to be fancy:

 Actually this is identical to attempt 1! It only looks
different but in fact is doing exactly the same thing

24

// Returns value if found, else null
public Object get(Object goal) {

synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}
}

20/11/2013

5

Attempt #3

 Risk: “get” (read-only) threads sometimes look at nodes without
locks, but “put” always updates those same nodes.

 According to JDK rules this is unsafe

25

// Returns value if found, else null
public Object get(Object goal) {

boolean checkLeft = false, checkRight = false;
synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) {

if (left==null) return null; else checkLeft = true;
} else {

if(right==null) return null; else checkRight = true;
}

}
if (checkLeft) return left.get(goal);
if (checkRight) return right.get(goal);

/* Never executed but keeps Java happy */ return null;
}

relinquishes lock on this – next
lines are “unprotected”

Attempt #4

 This version is safe: only accesses the shared variables left and
right while holding locks

 In fact it should work (I think)

26

// Returns value if found, else null
public Object get(Object goal) {

BST checkLeft = null, checkRight = null;
synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) {

if (left==null) return null; else checkLeft = left;
} else {

if(right==null) return null; else checkRight = right;
}

}
if (checkLeft != null) return checkleft.get(goal);
if (checkRight != null) return checkright.get(goal);

/* Never executed but keeps Java happy */ return null;
}

Attempt #3 illustrates risks

 The hardware itself actually needs us to use locking
and attempt 3, although it looks right in Java, could
actually malfunction in various ways
 Issue: put updates several fields:
 parent.left (or parent.right) for its parent node

 this.left and this.right and this.name and this.value

 When locking is used correctly, multicore hardware will
correctly implement the updates

 But if you look at values without locking, as we did in
Attempt #3, hardware can behave oddly!

27

Why can hardware cause bugs?

 Issue here is covered in cs3410 & cs4410
 Problem is that the hardware was designed under the requirement that

if threads contend to access shared memory, then readers and writers
must use locks

 Solutions #1 and #2 used locks and so they worked, but had no
concurrency

 Solution #3 violated the hardware rules and so you could see various
kinds of garbage in the fields you access!

 Solution #4 should be correct, but perhaps not optimally concurrent
(doesn’t allow concurrency while even one “put” is active)

 It’s hard to design concurrent data structures!

28

More tricky things to know about

 Java has actual “lock” objects
 They support lock/unlock operations

 But it isn’t easy to use them correctly
 Always need a try/finally structure

29

Lock someLock = new Lock();

try {
someLock.lock();
do-stuff-that-needs-a-lock();

}
finally {

someLock.unlock();
}

More tricky things to know about

 Needs try/finally

 Complication: someLock.unlock() can only be called by
same thread that called lock.

 Advanced issue: If your code catches exceptions and the
thread that called lock() might terminate, the lock can’t
be released! It remains locked forever... bad news...

30

Lock someLock = new Lock();

try {
someLock.lock();
do-stuff-that-needs-a-lock();

}
finally {

someLock.unlock();
}

20/11/2013

6

Semaphores

 Yet another option, mentioned Tuesday
 But avoids this issue seen with locks

 A Semaphore has an associated counter
 When created you specify an initial value

 Then each time the Semaphore is acquired the counter
counts down. And each time the Semaphore is
released, it counts up.

 If zero, s.acquire() waits for a release

31

More tricky things to know about

 With priorities Java can be very annoying
 ALWAYS runs higher priority threads before lower

priority threads if scheduler must pick

 The lower priority ones might never run at all

 Consequence: risk of a “priority inversion”
 High priority thread t1 is waiting for a lock, t2 has it

 Thread t2 is runnable, but never gets scheduled
because t3 is higher priority and “busy”

32

Debugging concurrent code

 There are Eclipse features to help you debug
concurrent code that uses locking
 These include packages to detect race conditions or

non-deterministic code paths

 Packages that will track locks in use and print nice
summaries if needed

 Packages for analyzing performance issues
 Heavy locking can kill performance on multicore machines

 Basically, any sharing between threads on different cores is
a performance disaster

33

Summary
34

 Use of multiple processes and multiple threads within each
process can exploit concurrency
 Which may be real (multicore) or “virtual” (an illusion)

 But when using threads, beware!
 Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions
 Yet synchronization also creates risk of deadlocks
 Even with proper locking concurrent programs can have other

problems such as “livelock”
 Serious treatment of concurrency is a complex topic (covered

in more detail in cs3410 and cs4410)
 Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

