
SPANNING TREES, INTRO. TO THREADS

Lecture 23

CS2110 – Fall 2013

1

A lecture with two distinct parts

 Part I: Finishing our discussion of graphs

 Today: Spanning trees

 Definitions, algorithms (Prim’s, Kruskal’s)

 Travelling salesman problem

 Part II: Introduction to the idea of threads

 Why do we need them?

 What is a thread?

2

Undirected Trees

• An undirected graph is a tree if there is

exactly one simple path between any pair

of vertices

3

Facts About Trees

• |E| = |V| – 1

• connected

• no cycles

In fact, any two of

these properties

imply the third, and

imply that the graph

is a tree

4

Spanning Trees

A spanning tree of a connected undirected

graph (V,E) is a subgraph (V,E') that is a tree

5

Spanning Trees

A spanning tree of a connected undirected

graph (V,E) is a subgraph (V,E') that is a tree

• Same set of

vertices V

• E' ⊆ E

• (V,E') is a tree

6

Finding a Spanning Tree

A subtractive method

• If there is a cycle, pick

an edge on the cycle,

throw it out – the

graph is still

connected (why?)

• Repeat until no more

cycles

• Start with the whole graph – it is connected

7

• If there is a cycle, pick

an edge on the cycle,

throw it out – the

graph is still

connected (why?)

• Repeat until no more

cycles

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

8

• If there is a cycle, pick

an edge on the cycle,

throw it out – the

graph is still

connected (why?)

• Repeat until no more

cycles

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

9

An additive method

• If more than one

connected component,

insert an edge between

them – still no cycles

(why?)

• Repeat until only one

component

• Start with no edges – there are no cycles

Finding a Spanning Tree
10

• If more than one

connected component,

insert an edge between

them – still no cycles

(why?)

• Repeat until only one

component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
11

• If more than one

connected component,

insert an edge between

them – still no cycles

(why?)

• Repeat until only one

component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
12

• If more than one

connected component,

insert an edge between

them – still no cycles

(why?)

• Repeat until only one

component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
13

• If more than one

connected component,

insert an edge between

them – still no cycles

(why?)

• Repeat until only one

component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
14

• If more than one

connected component,

insert an edge between

them – still no cycles

(why?)

• Repeat until only one

component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
15

Minimum Spanning Trees

• Suppose edges are weighted, and we want a

spanning tree of minimum cost (sum of edge

weights)

• Some graphs have exactly one minimum

spanning tree. Others have multiple trees with

the same cost, any of which is a minimum

spanning tree

16

Minimum Spanning Trees

• Suppose edges are weighted, and we want a

spanning tree of minimum cost (sum of edge

weights)

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

• Useful in network

routing & other

applications

• For example, to

stream a video

10

14

16

17

3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

14

16

18

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

14

16

19

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

62

11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

14

16

20

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

62

11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

14

16

21

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

1

2

5

66

22 28
24

34

72

64

8

25

54

62

11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

14

16

22

3 Greedy Algorithms

4

13

9

6

7

21

15

1

2

5

22 24

8

25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

14

16

23

3 Greedy Algorithms

4

13

9

6

7

15

1

2

5

8

25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

14

16

24

3 Greedy Algorithms

14

4

9

6

7

1

2

5

8

25

54

11

12

10

A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

16

25

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

14

16

26

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

14

16

27

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

14

16

28

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

14

16

29

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

16

30

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

16

31

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle

with edges already taken, throw it out,

otherwise keep it

Kruskal's

algorithm

32

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

33

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

34

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

35

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

36

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

37

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

38

3 Greedy Algorithms

C. Start with any vertex, add min weight edge

extending that connected component that

does not form a cycle

Prim's algorithm
(reminiscent of

Dijkstra's algorithm)

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

39

3 Greedy Algorithms

14

4

9

6

7

1

2

5

8

25

54

11

12

10

• When edge weights are all distinct, or if there

is exactly one minimum spanning tree, the 3

algorithms all find the identical tree

16

40

Prim’s Algorithm

 O(m + n log n) for adj list

 Use a PQ

 Regular PQ produces time O(n + m log m)

 Can improve to O(m + n log n) using a

fancier heap

prim(s) {

 D[s] = 0; mark s; //start vertex

 while (some vertices are unmarked) {

 v = unmarked vertex with smallest D;

 mark v;

 for (each w adj to v) {

 D[w] = min(D[w], c(v,w));

 }

 }

}

• O(n2) for adj matrix

– While-loop is executed n times

– For-loop takes O(n) time

41

Greedy Algorithms

 These are examples of Greedy

Algorithms

 The Greedy Strategy is an algorithm

design technique

 Like Divide & Conquer

 Greedy algorithms are used to solve

optimization problems

 The goal is to find the best solution

 Works when the problem has the

greedy-choice property

 A global optimum can be reached by

making locally optimum choices

• Example: the Change Making

Problem: Given an amount of

money, find the smallest number of

coins to make that amount

• Solution: Use a Greedy Algorithm

– Give as many large coins as you can

• This greedy strategy produces the

optimum number of coins for the

US coin system

• Different money system greedy

strategy may fail

– Example: old UK system

42

Similar Code Structures

while (some vertices are

 unmarked) {

 v = best of unmarked

 vertices;

 mark v;

 for (each w adj to v)

 update w;

}

• Breadth-first-search (bfs)

–best: next in queue

–update: D[w] = D[v]+1

• Dijkstra’s algorithm

–best: next in priority queue

–update: D[w] = min(D[w], D[v]+c(v,w))

• Prim’s algorithm

–best: next in priority queue

–update: D[w] = min(D[w], c(v,w))

here c(v,w) is the vw edge weight

43

Traveling Salesman Problem

 Given a list of cities and the distances between each

pair, what is the shortest route that visits each city

exactly once and returns to the origin city?

 Basically what we want the butterfly to do in A6! But we

don’t mind if the butterfly revisits a city (Tile), or doesn’t use

the very shortest possible path.

 The true TSP is very hard (NP complete)… for this we want

the perfect answer in all cases, and can’t revisit.

 Most TSP algorithms start with a spanning tree, then

“evolve” it into a TSP solution. Wikipedia has a lot of

information about packages you can download…

44

THREADS: WHO NEEDS ‘EM?

Introduction to the concept…

45

The Multicore Trend

 Moore’s Law: Computer speeds and memory densities

nearly double each year

 But we no longer are

getting this speed

purely by running a faster

CPU clock

 CPU = “central processor unit”

 CPU clock roughly determines

instructions / second for the

computer

46

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=jfZcj6tjFCdvPM&tbnid=SQ1tLnKahIrTMM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.extremetech.com%2Fcomputing%2F116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck&ei=Gb5_UuXLA7f64APLsIDwBg&bvm=bv.56146854,d.dmg&psig=AFQjCNHut3jvPq4HVKxHTBwMcvjOIzafaw&ust=1384189843980395

Issue: A fast computer runs hot

 Power dissipation rises as the square of the CPU

clock rate

 Chips were heading towards melting down!

 Multicore: with four

CPUs (cores) on one chip,

even if we run each at half

speed we get more overall

performance!

47

How a computer works

 Your program translates to machine instructions

 CPU has a pointer into the code: Program Counter

 To execute an instruction, it fetches what the PC points

to, decodes it, fetches the arguments, and performs the

required action (such as add two numbers, then store at

some location)

 We call this a “thread of execution” or a “context of

execution”

 One CPU == 1 thread, right? Well, not really….

48

Each program has its own thread!

 Earliest days: shared one CPU among many

programs by just having it run a few instructions

each, “round robin”

 Program A gets to run 10,000 instructions

 Then pause A, “context switch” to B, run 10,000 of B

 Then pause B, context switch to C, run 10,000 for C…

 This makes one CPU seem like N (slower) CPUs

 With the new trend toward multicore we can have a

lot of threads all concurrently active

49

Keeping those

cores busy
50

• The operating system provides

support for multiple “processes”

• In reality there there may be fewer

processors than processes

• Processes are an illusion – at the

hardware level, lots of multitasking

– memory subsystem

– video controller

– buses

– instruction prefetching

• Virtualization can even let one

machine create the illusion of many

machines (they share disks, etc)

How is a Thread defined?

 A separate “execution” that runs within a single

program and can perform a computational task

independently and concurrently with other threads

 Many applications do their work in just a single

thread: the one that called main() at startup

 But there may still be extra threads...

 ... Garbage collection runs in a “background” thread

 GUIs have a separate thread that listens for events and

“dispatches” upcalls

 Today: learn to create new threads of our own

51

What is a Thread in Java?

 A thread is a kind of object that “independently

computes”

 Has an associated stack and local variables (context)

 Needs to be created, like any object

 Then “started”. This causes some method (like main()) to

be invoked. It runs side by side with other thread in the

same program and they see the same global data

 The actual execution could occur on distinct CPU

cores, but Java could also simulate multiple cores.

You can’t really tell which approach Java is using

52

Concurrency

 Concurrency refers to a single program in which

several threads are running simultaneously

 Special problems arise: These threads literally access

the same shared memory regions at the same time!

 They are at risk of interfering with each other, e.g. if

one thread is modifying a complex structure like a

heap while another is trying to read it

 In cs2110 we focus on simple ways to use this model

without bugs introduced by interference

53

