

Note: Long-haul freight trucks typically serve locations at least 50 miles apart, excluding trucks that are used in movements by multiple modes and mail.

SPANNING TREES, INTRO. TO THREADS

Lecture 23
CS2110 - Fall 2013

A lecture with two distinct parts

\square Part I: Finishing our discussion of graphs
\square Today: Spanning trees
\square Definitions, algorithms (Prim's, Kruskal's)
\square Travelling salesman problem
\square Part II: Introduction to the idea of threads
\square Why do we need them?
\square What is a thread?

Undirected Trees

- An undirected graph is a tree if there is exactly one simple path between any pair of vertices

Facts About Trees

- $|\mathrm{E}|=|\mathrm{V}|-1$
- connected
- no cycles

In fact, any two of these properties imply the third, and
 imply that the graph is a tree

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph ($\mathrm{V}, \mathrm{E}^{\prime}$) that is a tree

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph ($\mathrm{V}, \mathrm{E}^{\prime}$) that is a tree

- Same set of vertices V
- $\mathrm{E}^{\prime} \subseteq \mathrm{E}$
- $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ is a tree

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Useful in network routing \& other applications
- For example, to
 stream a video

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

- When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree

Prim's Algorithm

```
prim(s) {
    D[s] = O; mark s; //start vertex
    while (some vertices are unmarked) {
        v = unmarked vertex with smallest D;
        mark v;
        for (each w adj to v) {
            D[w] = min(D[w], c(v,w));
        }
    }
```

- $O\left(n^{2}\right)$ for adj matrix
- While-loop is executed n times
- For-loop takes O(n) time
$\square \mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$ for adj list
- Use a PQ
\square Regular PQ produces time $O(n+m \log m)$
- Can improve to $O(m+n \log n)$ using a fancier heap

Greedy Algorithms

\square These are examples of Greedy Algorithms
\square The Greedy Strategy is an algorithm design technique

> - Like Divide \& Conquer
\square Greedy algorithms are used to solve optimization problems

- The goal is to find the best solution
\square Works when the problem has the greedy-choice property
- A global optimum can be reached by making locally optimum choices
- Example: the Change Making Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
- Give as many large coins as you can
- This greedy strategy produces the optimum number of coins for the US coin system
- Different money system \Rightarrow greedy strategy may fail
- Example: old UK system

Similar Code Structures

while (some vertices are unmarked) \{
$\mathrm{v}=$ best of unmarked vertices;
mark v;
for (each w adj to v) update w;
\}

- Breadth-first-search (bfs)
-best: next in queue
-update: $\mathrm{D}[\mathrm{w}]=\mathrm{D}[\mathrm{v}]+1$
- Dijkstra's algorithm
-best: next in priority queue
-update: $D[w]=\min (D[w], D[v]+c(v, w))$
- Prim's algorithm
-best: next in priority queue
-update: $\mathrm{D}[\mathrm{w}]=\min (\mathrm{D}[\mathrm{w}], \mathrm{c}(\mathrm{v}, \mathrm{w}))$
here $c(v, w)$ is the $v \rightarrow w$ edge weight

Traveling Salesman Problem

\square Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?
\square Basically what we want the butterfly to do in A6! But we don't mind if the butterfly revisits a city (Tile), or doesn't use the very shortest possible path.
\square The true TSP is very hard (NP complete)... for this we want the perfect answer in all cases, and can't revisit.
\square Most TSP algorithms start with a spanning tree, then "evolve" it into a TSP solution. Wikipedia has a lot of information about packages you can download...

THREADS: WHO NEEDS ‘EM?

Introduction to the concept...

The Multicore Trend

\square Moore's Law: Computer speeds and memory densities nearly double each year
\square But we no longer are getting this speed purely by running a faster CPU clock
\square CPU = "central processor unit"
\square CPU clock roughly determines instructions / second for the computer

Issue: A fast computer runs hot

\square Power dissipation rises as the square of the CPU clock rate
\square Chips were heading towards melting down!
\square Multicore: with four
CPUs (cores) on one chip, even if we run each at half speed we get more overall performance!

How a computer works

\square Your program translates to machine instructions
\square CPU has a pointer into the code: Program Counter
\square To execute an instruction, it fetches what the PC points to, decodes it, fetches the arguments, and performs the required action (such as add two numbers, then store at some location)
\square We call this a "thread of execution" or a "context of execution"
\square One CPU == 1 thread, right? Well, not really....

Each program has its own thread!

\square Earliest days: shared one CPU among many programs by just having it run a few instructions each, "round robin"
\square Program A gets to run 10,000 instructions
\square Then pause A, "context switch" to B, run 10,000 of B

- Then pause B, context switch to C, run 10,000 for $C .$. .
\square This makes one CPU seem like N (slower) CPUs
\square With the new trend toward multicore we can have a lot of threads all concurrently active

Keeping those

cores busy

- The operating system provides support for multiple "processes"
- In reality there there may be fewer processors than processes
- Processes are an illusion - at the hardware level, lots of multitasking
- memory subsystem
- video controller
- buses
- instruction prefetching
- Virtualization can even let one machine create the illusion of many machines (they share disks, etc)

How is a Thread defined?

\square A separate "execution" that runs within a single program and can perform a computational task independently and concurrently with other threads
\square Many applications do their work in just a single thread: the one that called main() at startup
\square But there may still be extra threads...
\square... Garbage collection runs in a "background" thread
\square GUls have a separate thread that listens for events and "dispatches" upcalls
\square Today: learn to create new threads of our own

What is a Thread in Java?

\square A thread is a kind of object that "independently computes"
\square Has an associated stack and local variables (context)
\square Needs to be created, like any object
\square Then "started". This causes some method (like main()) to be invoked. It runs side by side with other thread in the same program and they see the same global data
\square The actual execution could occur on distinct CPU cores, but Java could also simulate multiple cores. You can't really tell which approach Java is using

Concurrency

\square Concurrency refers to a single program in which several threads are running simultaneously
\square Special problems arise: These threads literally access the same shared memory regions at the same time!
\square They are at risk of interfering with each other, e.g. if one thread is modifying a complex structure like a heap while another is trying to read it
$\square \ln \operatorname{cs} 2110$ we focus on simple ways to use this model without bugs introduced by interference

