
SPANNING TREES, INTRO. TO THREADS 

Lecture 23 

CS2110 – Fall 2013 
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A lecture with two distinct parts 

 Part I: Finishing our discussion of graphs 

 Today: Spanning trees 

 Definitions, algorithms (Prim’s, Kruskal’s) 

 Travelling salesman problem 

 

 Part II: Introduction to the idea of threads 

 Why do we need them? 

 What is a thread? 
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Undirected Trees 

• An undirected graph is a tree if there is 

exactly one simple path between any pair 

of vertices 
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Facts About Trees 

• |E| = |V| – 1 

• connected 

• no cycles 

In fact, any two of 

these properties 

imply the third, and 

imply that the graph 

is a tree 
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Spanning Trees 

A spanning tree of a connected undirected 

graph (V,E) is a subgraph (V,E') that is a tree 
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Spanning Trees 

A spanning tree of a connected undirected 

graph (V,E) is a subgraph (V,E') that is a tree 

• Same set of 

vertices V 

• E' ⊆ E 

• (V,E') is a tree 

6 



Finding a Spanning Tree 

A subtractive method 

• If there is a cycle, pick 

an edge on the cycle, 

throw it out – the 

graph is still  

connected (why?) 

• Repeat until no more 

cycles 

• Start with the whole graph – it is connected 

7 



• If there is a cycle, pick 

an edge on the cycle, 

throw it out – the 

graph is still  

connected (why?) 

• Repeat until no more 

cycles 

• Start with the whole graph – it is connected 

Finding a Spanning Tree 

A subtractive method 

8 



• If there is a cycle, pick 

an edge on the cycle, 

throw it out – the 

graph is still  

connected (why?) 

• Repeat until no more 

cycles 

• Start with the whole graph – it is connected 

Finding a Spanning Tree 

A subtractive method 

9 



An additive method 

• If more than one 

connected component, 

insert an edge between 

them –  still no cycles 

(why?) 

• Repeat until only one 

component 

• Start with no edges – there are no cycles 

Finding a Spanning Tree 
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Minimum Spanning Trees 

• Suppose edges are weighted, and we want a 

spanning tree of minimum cost (sum of edge 

weights) 

• Some graphs have exactly one minimum 

spanning tree.  Others have multiple trees with 

the same cost, any of which is a minimum 

spanning tree 
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Minimum Spanning Trees 

• Suppose edges are weighted, and we want a 

spanning tree of minimum cost (sum of edge 

weights) 
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• Useful in network 

routing & other 

applications 

 

• For example, to 

stream a video 
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3 Greedy Algorithms 

A. Find a max weight edge – if it is on a cycle, 

throw it out, otherwise keep it 
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C. Start with any vertex, add min weight edge 

extending that connected component that 

does not form a cycle 

Prim's algorithm 
(reminiscent of 

Dijkstra's  algorithm) 
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• When edge weights are all distinct, or if there 

is exactly one minimum spanning tree, the 3 

algorithms all find the identical tree 
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Prim’s Algorithm 

 O(m + n log n) for adj list 

 Use a PQ 

 Regular PQ produces time O(n + m log m) 

 Can improve to O(m + n log n) using a 

fancier heap 

prim(s) { 

   D[s] = 0; mark s; //start vertex 

   while (some vertices are unmarked) { 

      v = unmarked vertex with smallest D; 

      mark v; 

      for (each w adj to v) { 

         D[w] = min(D[w], c(v,w)); 

      } 

   } 

} 

• O(n2) for adj matrix 

– While-loop is executed n times 

– For-loop takes O(n) time 
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Greedy Algorithms 

 These are examples of Greedy 

Algorithms 

 The Greedy Strategy is an algorithm 

design technique 

 Like Divide & Conquer 

 Greedy algorithms are used to solve 

optimization problems 

 The goal is to find the best solution 

 Works when the problem has the 

greedy-choice property 

 A global optimum can be reached by 

making locally optimum choices 

• Example: the Change Making 

Problem: Given an amount of 

money, find the smallest number of 

coins to make that amount 

• Solution: Use a Greedy Algorithm 

– Give as many large coins as you can 

• This greedy strategy produces the 

optimum number of coins for the 

US coin system 

• Different money system greedy 

strategy may fail 

– Example: old UK system 
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Similar Code Structures 

while (some vertices are 

     unmarked) { 

 v = best of unmarked 

    vertices; 

 mark v; 

 for (each w adj to v) 

  update w; 

} 

• Breadth-first-search (bfs) 

–best: next in queue 

–update: D[w] = D[v]+1 

• Dijkstra’s algorithm 

–best: next in priority queue 

–update: D[w] = min(D[w], D[v]+c(v,w)) 

• Prim’s algorithm 

–best: next in priority queue 

–update: D[w] = min(D[w], c(v,w)) 

 

here c(v,w) is the vw edge weight 
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Traveling Salesman Problem 

 Given a list of cities and the distances between each 

pair, what is the shortest route that visits each city 

exactly once and returns to the origin city? 

 Basically what we want the butterfly to do in A6!  But we 

don’t mind if the butterfly revisits a city (Tile), or doesn’t use 

the very shortest possible path. 

 The true TSP is very hard (NP complete)… for this we want 

the perfect answer in all cases, and can’t revisit.  

 Most TSP algorithms start with a spanning tree, then 

“evolve” it into a TSP solution.  Wikipedia has a lot of 

information about packages you can download… 

44 



THREADS: WHO NEEDS ‘EM? 

Introduction to the concept… 
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The Multicore Trend 

 Moore’s Law: Computer speeds and memory densities 

nearly double each year 

 But we no longer are 

getting this speed 

purely by running a faster 

CPU clock 

 CPU = “central processor unit” 

 CPU clock roughly determines 

instructions / second for the 

computer 
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Issue: A fast computer runs hot 

 Power dissipation rises as the square of the CPU 

clock rate 

 Chips were heading towards melting down! 

 

 Multicore: with four 

CPUs (cores) on one chip, 

even if we run each at half 

speed we get more overall 

performance! 
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How a computer works 

 Your program translates to machine instructions 

 CPU has a pointer into the code: Program Counter 

 To execute an instruction, it fetches what the PC points 

to, decodes it, fetches the arguments, and performs the 

required action (such as add two numbers, then store at 

some location) 

 We call this a “thread of execution” or a “context of 

execution” 

 One CPU == 1 thread, right?  Well, not really…. 
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Each program has its own thread! 

 Earliest days: shared one CPU among many 

programs by just having it run a few instructions 

each, “round robin” 

 Program A gets to run 10,000 instructions 

 Then pause A, “context switch” to B, run 10,000 of B 

 Then pause B, context switch to C, run 10,000 for C… 

 This makes one CPU seem like N (slower) CPUs 

 With the new trend toward multicore we can have a 

lot of threads all concurrently active 
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Keeping those 

cores busy 
50 

• The operating system provides 

support for multiple “processes” 

• In reality there there may be fewer 

processors than processes 

• Processes are an illusion – at the 

hardware level, lots of multitasking 

– memory subsystem 

– video controller 

– buses 

– instruction prefetching 

• Virtualization can even let one 

machine create the illusion of many 

machines (they share disks, etc) 



How is a Thread defined? 

 A separate “execution” that runs within a single 

program and can perform a computational task 

independently and concurrently with other threads 

 Many applications do their work in just a single 

thread: the one that called main() at startup  

 But there may still be extra threads... 

 ... Garbage collection runs in a “background” thread 

 GUIs have a separate thread that listens for events and 

“dispatches” upcalls 

 Today: learn to create new threads of our own 
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What is a Thread in Java? 

 A thread is a kind of object that “independently 

computes” 

 Has an associated stack and local variables (context) 

 Needs to be created, like any object 

 Then “started”.  This causes some method (like main()) to 

be invoked.  It runs side by side with other thread in the 

same program and they see the same global data 

 The actual execution could occur on distinct CPU 

cores, but Java could also simulate multiple cores.  

You can’t really tell which approach Java is using 

52 



Concurrency 

 Concurrency refers to a single program in which 

several threads are running simultaneously  

 Special problems arise: These threads literally access 

the same shared memory regions at the same time! 

 They are at risk of interfering with each other, e.g. if 

one thread is modifying a complex structure like a 

heap while another is trying to read it 

 In cs2110 we focus on simple ways to use this model 

without bugs introduced by interference 
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