

These are not Graphs

...not the kind we mean, anyway

Time to do A4, Recursion

Histogram:	max: 28.45	If you took more than 6-7 [00:02): 17
av: 5.2 hours for this assignment, [02:04): 102 median: 4.5	you may have been wasting your time.	

A certain amount of "floundering", just trying things, is good. But after a point, it just wastes time. Seek help if after an hour on one of the recursion problems you are stuck.

These are Graphs

Applications of Graphs

Communication networks
The internet is a huge graph
Routing and shortest path problems
Commodity distribution (flow)
Traffic control
Resource allocation
Geometric modeling

- ...

Graph Definitions

\square A directed graph (or digraph) is a pair (V, E) where $\square \mathrm{V}$ is a set
$\square E$ is a set of ordered pairs (u, v) where $u, v \in V$
■ Sometimes require $u \neq v$ (i.e. no self-loops)
An element of V is called a vertex (pl . vertices) or node
An element of E is called an edge or arc
$|V|$ is the size of V, often denoted by n
$|E|$ is size of E, often denoted by m
Example Directed Graph (Digraph)

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{u, v\}$

Example:

$V=\{a, b, c, d, e, f\}$
$E=\{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}$, $\{d, e\},\{d, f\},\{e, f\}\}$

Is this a dag?

[^0]\square This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively delete indegree- 0 vertices until the graph disappears

Is this a dag?

\square Intuition: A dag has a vertex with indegree 0 . Why?
\square This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively delete indegree- 0 vertices until the graph disappears

Is this a dag?

Intuition: A dag has a vertex with indegree 0 . Why?
\square This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively delete indegree- 0 vertices until the graph disappears

Is this a dag?

Intuition: A dag has a vertex with indegree 0 . Why?
\square This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively delete indegree- 0 vertices until the graph disappears

Is this a dag?

Intuition: A dag has a vertex with indegree 0 . Why?
\square This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively delete indegree-0 vertices until the graph disappears

Is this a dag?
18. Intuition: A dag has a vertex with indegree 0. Why?
\square This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

Topological Sort

\square We just computed a topological sort of the dag
This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

\square Useful in job scheduling with precedence constraints

Graph Coloring

Coloring of an undirected graph: an assignment of a color to each node such that no two adjacent vertices get the same color

How many colors are needed to color this graph?

Graph Coloring

A coloring of an undirected graph: an assignment of a color to each node such that no two adjacent vertices get the same color

How many colors are needed to color this graph?

An Application of Coloring

Vertices are jobs

\square Edge (u, v) is present if jobs u and v each require access to the same shared resource, so they cannot execute simultaneously
\square Colors are time slots to schedule the jobs

- Minimum number of colors needed to color the graph $=$ minimum number of time slots required

Planarity

A graph is planar if it can be embedded in the plane with no edges crossing

Is this graph planar?
Planarity

A graph is planar if it can be embedded in the plane with no edges crossing

Is this graph planar?

YES
Detecting Planarity
A graph is planar if and only if it does not contain
a copy of K_{5} or $\mathrm{K}_{3,3}$ (possibly with other nodes
along the edges shown)

Bipartite Graphs

A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets

Detecting Planarity

Early 1970's John Hopcroft spent time at Stanford, talked to grad student Bob Tarjan (now at Princeton). Together, they developed a linear-time algorithm to test a graph for planarity. Significant achievement.

Won Turing Award

Bipartite Graphs

The following are equivalent
$\square G$ is bipartite

- G is 2-colorable
- G has no cycles of odd length

Adjacency Matrix or Adjacency List?	
33	
n : number of vertices	
m : number of edges	- Adjacency List
$d(u)$: outdegree of u	- Uses space O(m+n)
Adjacency Matrix	- Can iterate over all edges in time $O(m+n)$
Uses space $O\left(\mathrm{n}^{2}\right)$	- Can answer "Is there an
Can iterate over all edges in time $O\left(n^{2}\right)$	$\mathrm{O}(\mathrm{d}(\mathrm{u}))$ time
Can answer "Is there an edge from u to v ?" in $O(1)$ time	- Better for sparse graphs (fewer edges)
Better for dense graphs (lots of edges)	

Depth-First Search

- Follow edges depth-first starting from an arbitrary vertex r, using a stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from r
- If there are still unvisited vertices, repeat
- O(m) time

Depth-First Search
- Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from
- When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path
- Eventually visit all vertices reachable from r
- If there are still unvisited vertices, repeat
- O(m) time
Difficult to understand! Let's write a recursive procedure

Representations of Graphs

Adjacency List

Graph Algorithms

- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
- Kruskal's algorithm

Depth-First Search

boolean[] visited;
node u is visited means: visited[u] is true To visit u means to: set visited[u] to true

Node u is REACHABLE from node v if there is a path (u, \ldots, v) in which all nodes of the path are unvisited.

Suppose all nodes are unvisited.

The nodes that are REACHABLE from node 1 are $1,0,2,3,5$

The nodes that are REACHABLE
from 4 are 4, 5, 6 .
\(\left.$$
\begin{array}{|l|l|}\hline \text { Depth-First Search } \\
\text { boolean[] visited; } \\
\begin{array}{l}\text { To "visit" a node u: set visited[u] to true. } \\
\text { Node u is REACHABLE from node v if } \\
\text { there is a path (u, ..., v) in which all } \\
\text { nodes of the path are unvisited. }\end{array} & \begin{array}{l}\text { Suppose } 2 \text { is } \\
\text { already visited, } \\
\text { others unvisited. } \\
\text { The nodes that are } \\
\text { REACHABLE } \\
\text { from node 1 are 1, } \\
0,5\end{array}
$$

The nodes that are\end{array}\right\}\)| REACHABLE |
| :--- |
| from 4 are 4, 5, 6. |

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */
public static void dfs(int u) \{
visited[u]= true;
for each edge (u, v)
if v is unvisited then $\operatorname{dfs}(\mathrm{v})$;
\}

Let u be 1
The nodes to be
visited are
$0,2,3,5$

Have to do dfs on all unvisited neighbors of u

Depth-First Search

/** Node u is unvisited. Visit all nodes that are REACHABLE from u. */
public static void dfs(int u) \{ visited[u]= true;

Let u be 1
The nodes that are REACHABLE from node 1 are 1, $0,2,3,5$
\}

Depth-First Search

```
/** Node u is unvisited. Visit all nodes
    that are REACHABLE from u. */
public static void dfs(int u) {
        visited[u]= true;
Let \(u\) be 1 The nodes to be visited are \(0,2,3,5\)
```

 for each edge (\(u, v\))
 if v is unvisited then \(\mathrm{dfs}(\mathrm{v})\);
 \}

Suppose the for each loop visits neighbors in numerical order. Then dfs(1) visits the nodes in this order:
$1,0,2,3,5$

Depth-First Search

/** Node u is unvisited. Visit all nodes that are REACHABLE from u. */
public static void dfs(int u) \{
visited[u]= true;
for each edge (u, v)
if v is unvisited then $\operatorname{dfs}(v)$;
\}

Example: There may be a different way (other than array visited) to know whether a node has been visited

Example: Instead of using recursion, use a loop and maintain the stack yourself.

Depth-First Search

/** Node u is unvisited. Visit all nodes that are REACHABLE from u. */ public static void dfs(int u) \{ visited[u]= true; for each edge (u, v) if v is unvisited then $\operatorname{dfs}(\mathrm{v})$;	That's all there is to the basic dfs. You may have to change it to fit a particular situation.

\}
Example: In Bfly, there is no need for a parameter, because the current position of the Bfly takes the place of u. But then the specification must be changed, and probably the Bfly should be back at its original tile after each iteration of the loop. Make sure that is in the specification!

Breadth-First Search (BFS)	
BFS visits all neighbors first before visiting their neighbors. It goes level by level. Use a queve instead of a stack a stack: last-in, first-out (LIFO) a queve: first-in, first-out (FIFO)	dfs(0) visits in this order: $0,1,4,5,2,3,6$ bfs(0) visits in this order: $0,1,2,3,4,5,6$

Summary
\square
We have seen an introduction to graphs and will return to this topic on Thursday \square Definitions \square Testing for a dag \square Depth-first and breadth-first search

[^0]: \square Intuition: A dag has a vertex with indegree 0 . Why?

