
10/20/2013

1

DESIGNING, CODING,
AND DOCUMENTING
Lecture 16
CS2110 – Fall 2013

Designing and Writing a Program
2

 Don't sit down at the terminal immediately and start
hacking

 Design stage – THINK first
 about the data you are working with

 about the operations you will perform on it

 about data structures you will use to represent it

 about how to structure all the parts of your program so as to achieve abstraction and
encapsulation

 Coding stage – code in small bits
 test as you go

 understand preconditions and postconditions

 insert sanity checks (assert statements in Java are good)

 worry about corner cases

 Use Java API to advantage

The Design-Code-Debug Cycle
3

 Design is faster than debugging (and more fun)
 extra time spent designing reduces coding and debugging

 Which is better?

 Actually, should be more like this:

design code debug

design code debug

Divide and Conquer!
4

 Break program into manageable parts that can
be implemented, tested in isolation

 Define interfaces for parts to talk to each other –
develop contracts (preconditions, postconditions)

 Make sure contracts are obeyed
 Clients use interfaces correctly
 Implementers implement interfaces correctly (test!)

 Key: good interface documentation

Pair Programming
5

 Work in pairs
 Pilot/copilot

 pilot codes, copilot watches and makes
suggestions

 pilot must convince copilot that code works
 take turns

 Or: work independently on different parts
after deciding on an interface
 frequent design review
 each programmer must convince the other
 reduces debugging time

 Test everything

Documentation is Code
6

 Comments (esp. specifications) are as important as the
code itself
 determine successful use of code

 determine whether code can be maintained

 creation/maintenance = 1/10

 Documentation belongs in code or as close as possible
 Code evolves, documentation drifts away

 Put specs in comments next to code when possible

 Separate documentation? Code should link to it.

 Avoid useless comments
 x = x + 1; //add one to x -- Yuck!

 Need to document algorithm? Write a paragraph at the top.

 Or break method into smaller, clearer pieces.

10/20/2013

2

Javadoc
7

 An important Java documentation tool

 Extracts documentation from classes, interfaces
 Requires properly formatted comments

 Produces browsable, hyperlinked HTML web
pages

Java source code
(many files)

Linked HTML web
pages

javadoc

8

How Javadoc is Produced
9

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {

this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();

}

indicates Javadoc comment

Javadoc keywords

can include HTML

Some Useful Javadoc Tags
10

 @return description
 Use to describe the return value of the method, if any
 E.g., @return the sum of the two
intervals

 @param parameter-name description
 Describes the parameters of the method
 E.g., @param i the other interval

 @author name
 @deprecated reason
 @see package.class#member
 {@code expression}

 Puts expression in code font

Developing and Documenting an ADT
11

1. Write an overview – purpose of the ADT

2. Decide on a set of supported operations

3. Write a specification for each operation

1. Writing an ADT Overview
12

/**

* An Interval represents a closed interval [a,b]

* on the real number line.

*/ Abstract
description of

the ADT’s
values

Javadoc
comment

 Example abstraction: a closed interval [a,b] on
the real number line
 [a,b] = { x | a ≤ x ≤ y }

 Example overview:

10/20/2013

3

2. Identify the Operations
13

 Enough operations for needed tasks

 Avoid unnecessary operations – keep it simple!
 Don’t include operations that client (without access

to internals of class) can implement

3. Writing Method Specifications
14

 Include
 Signature: types of method arguments, return type

 Description of what the method does (abstractly)

 Good description (definitional)
 /** Add two intervals. The sum of two intervals is

 * a set of values containing all possible sums of

 * two values, one from each of the two intervals.

 */

 public Interval plus(Interval i);

 Bad description (operational)
 /** Return a new Interval with lower bound a+i.a,

 * upper bound b+i.b.

 */

 public Interval plus(Interval i);

Not abstract,
might as well

read the code…

3. Writing Specifications (cont’d)

15

 Attach before methods of class
or interface

/** Add two intervals. The sum of two intervals is
* a set of values containing all possible sums of
* two values, one from each of the two intervals.
*
* @param i the other interval
* @return the sum of the two intervals
*/ Method overview

Method description

Additional tagged
clauses

Know Your Audience
16

 Code and specs have a target audience
 the programmers who will maintain and use it

 Code and specs should be written
 With enough documented detail so they can

understand it
 While avoiding spelling out the obvious

 Try it out on the audience when possible
 design reviews before coding
 code reviews

Consistency
17

A foolish consistency is the hobgoblin of little minds – Emerson

 Pick a consistent coding style, stick with it
 Make your code understandable by “little minds”

 Teams should set common style

 Match style when editing someone else’s code
 Not just syntax, also design style

Simplicity
18

 The present letter is a very long one, simply because I had no time to
make it shorter. –Blaise Pascal

 Be brief. –Strunk & White

 Applies to programming… simple code is
 Easier and quicker to understand

 More likely to be correct

 Good code is simple, short, and clear
 Save complex algorithms, data structures for where they are needed

 Always reread code (and writing) to see if it can be made shorter, simpler,
clearer

10/20/2013

4

Choosing Names
19

Don’t try to document with variable names
Longer is not necessarily better

int searchForElement(

int[] array_of_elements_to_search,

int element_to_look_for);

int search(int[] a, int x);

Names should be short but suggestive
Local variable names should be short

Avoid Copy-and-Paste
20

Biggest single source of program errors
Bug fixes never reach all the copies

Think twice before using edit copy-and-paste function

Abstract instead of copying!
Write many calls to a single function rather than copying

the same block of code around

^V

But sometimes you have no choice
21

 Example: SWING or SWT GUI code
 Realistically, you simply have to use cut-and-paste!

 In such situations, do try to understand what you
copied and “make it your own”
 They wrote it first

 But now you’ve adopted it and will love it and care for
it… maybe even rewrite it…

Design vs Programming by Example
22

 Programming by example:
 copy code that does something like what you want
 hack it until it works

 Problems:
 inherit bugs in code
 don't understand code fully
 usually inherit unwanted functionality
 code is a bolted-together hodge-podge

 Alternative: design
 understand exactly why your code works
 reuse abstractions, not code templates

Avoid Premature Optimization
23

 Temptations to avoid
 Copying code to avoid overhead of abstraction mechanisms
 Using more complex algorithms & data structures

unnecessarily
 Violating abstraction barriers

 Result:
 Less simple and clear
 Performance gains often negligible

 Avoid trying to accelerate performance until
 You have the program designed and working
 You know that simplicity needs to be sacrificed
 You know where simplicity needs to be sacrificed

Avoid Duplication
24

 Duplication in source code creates an implicit
constraint to maintain, a quick path to failure
 Duplicating code fragments (by copying)

 Duplicating specs in classes and in interfaces

 Duplicating specifications in code and in external documents

 Duplicating same information on many web pages

 Solutions:
 Named abstractions (e.g., declaring functions)

 Indirection (linking pointers)

 Generate duplicate information from source (e.g., Javadoc!)

 If you must duplicate:
 Make duplicates link to each other so can find all clones

10/20/2013

5

Maintain State in One Place
25

 Often state is duplicated for efficiency

 But difficult to maintain consistency

 Atomicity is the issue
 if the system crashes while in the middle of an update, it

may be left in an inconsistent state
 difficult to recover

Error Handling
26

 It is usually an afterthought — it shouldn’t be

 User errors vs program errors — there is a
difference, and they should be handled differently

 Insert lots of ‘‘sanity checks’’ — the Java assert
statement is good way to do this

 Avoid meaningless messages

Avoid Meaningless Messages
27

Design Patterns
28

 Introduced in 1994 by Gamma, Helm, Johnson,
Vlissides (the “Gang of Four”)

 Identified 23 classic software design patterns in
OO programming

 More than 1/2 million copies sold in 14 languages

Design Patterns
29

•Abstract Factory groups object factories that have a common theme.
•Builder constructs complex objects by separating construction and representation.
•Factory Method creates objects without specifying the exact class to create.
•Prototype creates objects by cloning an existing object.
•Singleton restricts object creation for a class to only one instance.
•Adapter allows classes with incompatible interfaces to work together by wrapping its

own interface around that of an already existing class.
•Bridge decouples an abstraction from its implementation so that the two can vary

independently.
•Composite composes one-or-more similar objects so that they can be manipulated

as one object.
•Decorator dynamically adds/overrides behaviour in an existing method of an object.
•Facade provides a simplified interface to a large body of code.
•Flyweight reduces the cost of creating and manipulating a large number of similar

objects.
•Proxy provides a placeholder for another object to control access, reduce cost, and

reduce complexity.

Design Patterns
30

• Chain of responsibility delegates commands to a chain of processing objects.
• Command creates objects which encapsulate actions and parameters.
• Interpreter implements a specialized language.
• Iterator accesses the elements of an object sequentially without exposing its

underlying representation.
• Mediator allows loose coupling between classes by being the only class that

has detailed knowledge of their methods.
• Memento provides the ability to restore an object to its previous state (undo).
• Observer is a publish/subscribe pattern that allows a number of observer

objects to see an event.
• State allows an object to alter its behavior when its internal state changes.
• Strategy allows one of a family of algorithms to be selected on-the-fly at

runtime.
• Template method defines the skeleton of an algorithm as an abstract class,

allowing its subclasses to provide concrete behavior.
• Visitor separates an algorithm from an object structure by moving the hierarchy

of methods into one object.

10/20/2013

6

Design Patterns
31

• Chain of responsibility delegates commands to a chain of processing objects.
• Command creates objects which encapsulate actions and parameters.
• Interpreter implements a specialized language.
• Iterator accesses the elements of an object sequentially without exposing its

underlying representation.
• Mediator allows loose coupling between classes by being the only class that

has detailed knowledge of their methods.
• Memento provides the ability to restore an object to its previous state (undo).
• Observer is a publish/subscribe pattern that allows a number of observer

objects to see an event.
• State allows an object to alter its behavior when its internal state changes.
• Strategy allows one of a family of algorithms to be selected on-the-fly at

runtime.
• Template method defines the skeleton of an algorithm as an abstract class,

allowing its subclasses to provide concrete behavior.
• Visitor separates an algorithm from an object structure by moving the hierarchy

of methods into one object.

Observer Pattern
32

 Observable
 changes from time to time

 is aware of Observers, other entities that want to be
informed when it changes

 but may not know (or care) what or how many
Observers there are

 Observer
 interested in the Observable

 want to be informed when the Observable changes

Observer Pattern
33

 Issues

 does the Observable push information, or does the Observer pull it? (e.g., email
vs newsgroup)

 whose responsibility is it to check for changes?

 publish/subscribe paradigm

Observable

Observers

Observer Pattern
34

public interface Observer<E> {
void update(E event);

}

public class Observable<E> {
private Set<Observer<E>> observers = new HashSet<Observer<E>>();
boolean changed;

void addObserver(Observer<E> obs) {
observers.add(obs);

}

void removeObserver(Observer<E> obs) {
observers.remove(obs);

}

void notifyObservers(E event) {
if (!changed) return;
changed = false;
for (Observer<E> obs : observers) {

obs.update(event);
}

}
}

Visitor Pattern
35

 A data structure provides a generic way to iterate over
the structure and do something at each element

 The visitor is an implementation of interface methods
that are called at each element

 The visited data structure doesn’t know (or care) what
the visitor is doing

 There could be many visitors, all doing different things

Visitor Pattern
36 public interface Visitor<T> {

void visitPre(T datum);
void visitIn(T datum);
void visitPost(T datum);

}

public class TreeNode<T> {
TreeNode<T> left;
TreeNode<T> right;
T datum;

TreeNode(TreeNode<T> l, TreeNode<T> r, T d) {
left = l;
right = r;
datum = d;

}

void traverse(Visitor<T> v) {
v.visitPre(datum);
if (left != null) left.traverse(v);
v.visitIn(datum);
if (right != null) right.traverse(v);
v.visitPost(datum);

}
}

10/20/2013

7

No Silver Bullets
37

 These are all rules of thumb; but there is no
panacea, and every rule has its exceptions

 You can only learn by doing – we can't do it for
you

 Following software engineering rules only makes
success more likely!

