

InsertionSort

Divide \& Conquer?

It often pays to
\square Break the problem into smaller subproblems, \square Solve the subproblems separately, and then \square Assemble a final solution

This technique is called divide-and-conquer \square Caveat: It won' thelp unless the partitioning and assembly processes are inexpensive

Can we apply this approach to sorting?

Reading and Homework

- Texbook, chapter 8 (general concepts) and 9 (MergeSort, QuickSort)
- Thought question: Cloud computing systems sometimes sort data sets with hundreds of billions of items - far too much to fit in any one computer. So they use multiple computers to sort the data. Suppose you had N computers and each has room for D items, and you have a data set with $N^{*} D / 2$ items to sort. How could you sort the data? Assume the data is initially in a big file, and you'll need to read the file, sort the data, then write a new file in sorted order.

SelectionSort

```
//sort a[], an array of int
for (int i = 1; i < a.length; i++) {
int m= index of minimum of a[i..];
Swap b[i] and b[m];
}
```

Another common way for people to sort cards

Runtime

- Worst-case $O\left(n^{2}\right)$
- Best-case O(n^{2})
- Expected-case O(n^{2})

Each iteration, swap min value of this section into a[i]

MergeSort

\square Quintessential divide-and-conquer algorithm
\square Divide array into equal parts, sort each part, then merge

- Questions:
\square Q1: How do we divide array into two equal parts?
A1: Find middle index: a.length/2
\square Q2: How do we sort the parts?
A2: Call MergeSort recursively!
\square Q3: How do we merge the sorted subarrays?
A3: Write some (easy) code
 Recursively!

MergeSort Analysis

MergeSort Analysis	
Outline (code on website) -Split array into two halves \square Recursively sort each half -Merge two halves \square Merge: combine two sorted arrays into one sorted array םRule: always choose smallest item -Time: $O(n)$ where n is the total size of the two arrays	Runtime recurrence $\mathrm{T}(\mathrm{n})$: time to sort array of size n $\begin{aligned} & T(1)=1 \\ & T(n)=2 T(n / 2)+O(n) \end{aligned}$ Can show by induction that $T(n)$ is $O(n \log n)$ Alternatively, can see that $T(n)$ is $O(n \log n)$ by looking at tree of recursive calls

QuickSort

Idea To sort $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$, which has an arbitrary value x in $\mathrm{b}[\mathrm{h}]$:

first swap array values around until b[h..k] looks like this:

Then sort $\mathrm{b}[\mathrm{h} . \mathrm{j} \mathrm{j}-1]$ and $\mathrm{b}[\mathrm{j}+1 . . \mathrm{k}]$ —how do you do that?

Merging Sorted Arrays A and B into C

- Create array C of size: size of $A+$ size of B
$\mathrm{i}=0$; $\mathrm{i}=0$; $\mathrm{k}=0$; // initially, nothing copied
Copy smaller of $A[i]$ and $B[i]$ into $C[k]$
- Increment i or i , whichever one was used, and k

When either A or B becomes empty, copy remaining elements from the other array (B or A, respectively) into C

This tells what has been done so far:
$\mathrm{A}[0 . \mathrm{i}-1]$ and $\mathrm{B}[0 . . \mathrm{j}-1]$ have been placed in $\mathrm{C}[0 . . \mathrm{k}-1]$.
$\mathrm{C}[0 . . \mathrm{k}-1]$ is sorted.

MergeSort Notes

\square Asymptotic complexity: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Much faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$

\square Disadvantage

- Need extra storage for temporary arrays
- In practice, can be a disadvantage, even though MergeSort is asymptotically optimal for sorting
- Can do MergeSort in place, but very tricky (and slows execution significantly)
\square Good sorting algorithms that do not use so much extra storage?

Yes: QuickSort

In-Place Partitioning

\square On the previous slide we just moved the items to partition them
\square But in fact this would require an extra array to copy them into
\square Developer of QuickSort came up with a better idea \square In place partitioning cleverly splits the data in place

In-Place Partitioning

Change $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$	$\mathrm{h} \mathrm{h} \mathrm{h}+1$	
l from this:	b	k

 elements:
 array looking like this. At each step, swap $b[j+1]$ with something \quad Start with: $j=h ; t=k ;$

In-Place Partitioning

Key issues	Choosing pivot
- How to choose a pivot?	- Ideal pivot: the median, since it splits array in half
How to partition array in place?	- Computing median of unsorted array is $\mathrm{O}(\mathrm{n})$, quite complicated
Partitioning in place - Takes O(n) time (next slide) - Requires no extra space	Popular heuristics: Use - first array value (not good) - middle array value - median of first, middle, last, values GOOD!

In-Place Partitioning

\square Once indices cross, partitioning is done

- If you replace blue with $\leq \mathbf{p}$ and red with $\geq \mathbf{p}$, this is exactly what we need for QuickSort partitioning
- Notice that after partitioning, array is partially sorted
- Recursive calls on partitioned subarrays will sort subarrays
\square No need to copy/move arrays, since we partitioned in place

QuickSort procedure

```
/** Sort b[h..k]. */
```

public static void $\mathrm{QS}($ int [] b, int h, int k) \{
if (b[h..k] has < 2 elements) return; Base case
int $\mathrm{j}=$ partition(b, h, k);
// We know b[h..j-1] <= b[j] <= b[j+1..k]
// So we need to sort b[h..j-1] and b[j+1..k]
QS(b, h, j-1);
QS(b, j+1, k); Function does the
\} partition algorithm and
returns position j of
pivot

QuickSort versus MergeSort

```
/** Sort b[h..k] */
public static void QS
            (int[] b, int h, int k) {
        if (k-h<1) return;
        int j= partition(b,h, k);
        QS(b, h, j-1);
        QS(b, j+1, k);
}
```

/** Sort b[h..k] */
public static void MS
(int[] b, int h, int k) \{
if ($k-h<1$) return;
MS(b, h, (h+k)/2);
MS(b, (h+k)/2 + 1, k);
merge(b, h, (h+k)/2, k);
\}
/** Sort b[h..k] */
public static void MS
(int[] b, int h, int k) \{ if ($k-h<1$) return; MS(b, h, (h+k)/2); MS(b, (h+k)/2 + 1, k); merge(b, h, (h+k)/2, k);
\}

QuickSort Analysis

Runtime analysis (worst-case)
\square Partition can produce this: $\quad \mathrm{p} \mid \geq \mathrm{p}$

- Runtime recurrence: $T(n)=T(n-1)+n$
- Can be solved to show worst-case $T(n)$ is $O\left(n^{2}\right)$
\square Space can be $O(n)$-max depth of recursion
Runtime analysis (expected-case)
- More complex recurrence
\square Can be solved to show expected $T(n)$ is $O(n \log n)$
Improve constant factor by avoiding QuickSort on small sets
\square Use InsertionSort (for example) for sets of size, say, ≤ 9
\square Definition of small depends on language, machine, etc.

Sorting Algorithm Summary	
```We discussed \(\square\) InsertionSort \(\square\) SelectionSort \(\square\) MergeSort \(\square\) QuickSort Other sorting algorithms \(\square\) HeapSort (will revisit) \(\square\) ShellSort (in text) \(\square\) BubbleSort (nice name) \(\square\) RadixSort \(\square\) BinSort - CountingSort```	Why so many? Do computer scientists have some kind of sorting fetish or what?   Stable sorts: Ins, Sel, Mer Worst-case O(n log n): Mer, Hea Expected $O(n \log n)$ :   Mer, Hea, Qui   Best for nearly-sorted sets: Ins   No extra space: Ins, Sel, Hea   Fastest in practice: Qui   Least data movement: Sel



Lower Bound for Comparison Sorting
$\square$ Say we have a correct comparison-based algorithm
$\square$ Suppose we want to sort the elements in an array b[]
$\square$ Assume the elements of b[] are distinct
$\square$ Any permutation of the elements is initially possible
$\square$ When done, b[] is sorted

- But the algorithm could not have taken the same path in the comparison tree on different input permutations

Lower Bound for Comparison Sorting
How many input permutations are possible? $n!\sim 2^{n} \log n$
For a comparison-based sorting algorithm to be correct, it
must have at least that many leaves in its comparison tree
To have at least $n!\sim 2^{n} \log n$ leaves, it must have height at
least $n$ log $n$ (since it is only binary branching, the number
of nodes at most doubles at every depth)
Therefore its longest path must be of length at least
$\mathrm{n} \log \mathrm{n}$, and that it its worst-case running time

java.lang.Comparable<T> Interface
public int compareTo(T x);
-Return a negative, zero, or positive value

- negative if this is before $\mathbf{x}$
$\bullet 0$ if this.equals( $\mathbf{x}$ )
* positive if this is after $\mathbf{x}$

Many classes implement Comparable
-String, Double, Integer, Character, Date, ..
-Class implements Comparable? Its method compareTo is
considered to define that class' s natural ordering
Comparison-based sorting methods should work with Comparable for maximum generality

