

Time spent on A2
N

0 max: 25.4; avg: 5.2 hours, mean: 4.5 hours, min: 0.57 hours

70

60

50 -

40 -

30 -

20 -

10 -

0 - T T T T |.| T T e
1 2 3 45 6 7 8 9210111213 14151617181920212223242526

References and Homework

Text:
Chapters 10, 11 and 12

Homework: Learn these List methods, from
http://docs.oracle.com/javase/7 /docs/api/java/util/List.html

add, addAll, contains, containsAll, get, indexOf,
isEmpty, lastindexOf, remove, size, toArray

myList = new List(someOtherList)
myList = new List(Collection<T>)
Also useful: Arrays.asList()

Understanding assignment A3
~a 0 ______________________________
o s s A parkcwit the

butterfly in position

(1,1), a flower and a
cliff.

Understanding assignment A3

Ga @m A 4x4 park with the

(3,3) (4,3) butterfly in position

(1,1), a flower and a
cliff.

31) @ -1 The same park! The

(3,3) (4,3)

map “wraps” as if the
park lives
on a torus!

Mapping Park coordinates to Java

In the Park we use a column,row notation to identify cells, and have
HEIGHT columns and WIDTH rows.
Inside Java, we use 2-D arrays that index from O

TileCell[][] myMap = new TileCell[Height][Width]

But one issue is that a (column,row) coordinate in the Park has to be
“swapped” and adjusted to access the corresponding cell of myMap

Rule:

Save the Park Cell from Park location (r,c) at myMap[HEIGHT-c][r-1]
myMap[x][y] tells you about Park location (y+1, HEIGHT-x)

Mapping Park coordinates to Java

Rule:
Save the Park Cell from Park location (r,c) at myMap[HEIGHT-c][r-1]
myMap[x][y] tells you about Park location (y+1, HEIGHT-x)

Examples: assume HEIGHT=3, WIDTH=3

Location (1,3) = top left corner. Stored in myMap[HEIGHT-3][1-1], which
is myMap[0][0]. Converts back to (1,3)

Location (1,1) = bottom left corner. Store in myMap[2][0].
Location (2,2) = middle of the 3x3 Park. Store in myMap[1][1]
Location (2,3) = top row, middle: Store in myMap[0][1]

Mapping Park coordinates to Java

(1,3) (2,3) (3,3)
Park
(Height=3, Width=3) (,2) (2,2) (3,2)
(1,1) (2,1) (3,1)
0][0] 0][1] 0][2
myMap | [1][0; 1][1] 1][2]

(Height=3, Width=3)

Mapping Park coordinates to Java

HEIGHT=3, WIDTH=3

park uses |(1:3) (2,3) (3,3)
(column, H'_)W) (l 12) _ (212) _ (312) _
notation an | @n ol
myMap [[O1001 " |TOI1” | |[0]i2
uses [row][column] |[1][O] 1][1° 1][2
indexing | o110 21111 ¥ | 12172

Example: Park (2,1) => myMap[HEIGHT-r][c-1]
... myMap[3-1][2-1]: myMap[2][1]

List Overview

[

[l

[

[

Purpose

Maintain an ordered collection of elements (with possible duplication)

Common operations

Create a list

Access elements of a list sequentially
Insert elements into a list

Delete elements from a list

Arrays

Random access ©
Fixed size: cannot grow or shrink after creation ® (Sometimes simulated using copying)

Linked Lists

No random access ® (Sometimes random-access is “simulated” but cost is linear)
Can grow and shrink dynamically ©

A Simple List Interface
N

1 Note that Java has a more complete interface and
we do expect you to be proficient with it!

List

Data Structures

] Arrqy e Linked list

= uses a sequence of linked cells

= we will define a class ListCell from
which we build lists

Must specify array size at
creation

Insert, delete require moving
elements

Must copy array to a larger
array when it gets full

24 87

24 | -7 (87 (/8

empty

78

EE

List Terminology

1 Head = first element

of the list

1 Tail = rest of the

33

o—

_,|1o

head

ist

-7

tail

CI(’]SS LiS'I'Ce ” Each list element “points” to

the next onel
/ End of list: next==null

class ListCell<T> {
private T datum;

private ListCell<T> next;

public ListCell (T datum, ListCell<T> next) {
this.datum = datum;
this.next = next;

public T getDatum() { return datum; }

public ListCell<T> getNext () { return next; }
public void setDatum(T obj) { datum = obj; }
public void setNext (ListCell<T> c) { next = c; }

Ways of building a Linked List

e . -

c ListCell: —

—

ListCell<Integer> c =
new ListCell<Integer>(new Integer (24) ,null); J 1

|istCell:

Integer t new Integer (24); P
Integer s new Integer (-7);
Integer e = new Integer(87);

ListCell<Integer> p =
new ListCell<Integer>(t,
new ListCell<Integer> (s,
new ListCell<Integer>(e, null)));

Building a Linked List (cont’d)

Another way:

Integer t = new Integer (24);
Integer s = new Integer(-7);
Integer e = new Integer (87); _ ///////////
//Can also use "autoboxing" p ListCell: \\\\\\\\\\\\

ListCell<Integer> p = new ListCell<Integer>(e, null); —
P new ListCell<Integer>(s, p);
P new ListCell<Integer>(t, p);

Note: p = new ListCell<Integer>(s,p) ;
does not create a circular list!

Accessing List Elements

o Linked Lists are p [istCell:
sequential-access data
structures.

To access contents of cell n in
sequence, You must access cells O
.. N-1

0 Accessing data in first * Writing to fields
cel: p.getDatum() Incellscanbe =

. . done the same way
11 Accessing data in .
= Update data in first cell:

second cell: p.setDatum(new Integer (53));

.getNext () .getDat .
P-9e e.x (} .getDa u.m() . = Update data in second cell:
O Accessmg next field in p.getNext () . setDatum (new

second cell: Integer(53));
p.getNext () .getNext () = Chop off third cell:
p.getNext () .setNext (null) ;

Access Example: Linear Search

// Here is another version. Why does this work?
public static boolean search(T x, ListCell c) {
while(c '= null) {
if (c.getDatum() .equals(x)) return true;
c = c.getNext() ;
}

return false;

// Scan list looking for x, return true if found

public static boolean search(T x, ListCell c) {

for (ListCell 1lc = c¢; 1lc !'= null; lc = lc.getNext()) {
if (lc.getDatum() .equals(x)) return true;

}

return false;

Why would we need to write code for
search? It already exists in Java utils!

Good question! In practice you should always use
indexOf(), contains(), etc

But by understanding how to code search, you gain
skills you’ll need when working with data structures
that are more complex and that don’t match
predefined things in Java utils

General rule: If it already exists, use it. But for
anything you use, know how you would code it!

Recursion on Lists

Recursion can be done on lists
Similar to recursion on integers

Almost always
Base case: empty list

Recursive case: Assume you can solve problem on the tail,
use that in the solution for the whole list

Many list operations can be implemented very simply
by using this idea
Although some are easier to implement using iteration

Recursive Search

Base case: empty list

return false

Recursive case: non-empty list
if data in first cell equals object x, return true

else return the result of doing linear search on the tail

Recursive Search: Static method

public static boolean search (T x, ListCell c) {
if (¢ == null) return false;
if (c.getDatum() .equals(x)) return true;

return search(x, c.getNext()):

bublic static boolean search (T x, ListCell c) {
return c '= null &&
(c.getDatum() .equals(x) || search(x, c.getNext())):

Recursive Search: Instance method

public boolean search (T x) ({
if (datum.equals(x)) return true;
if (next == null) return false

return next.search (x) ;

bublic boolean search (T x) {
return datum.equals(x) ||
(next!= null && next.search (x));

Reversing a List

Given a list, create a new list with elements in reverse
order

Intuition: think of reversing a pile of coins

bublic static ListCell reverse(ListCell c) {
ListCell rev = null;
while(c !'= null) {
rev = new ListCell (c.getDatum(), rev)
c = c.getNext();
}

return rev;

}

It may not be obvious how to write this recursively...

Reversing a list: Animation

1 Approach: One by one, remove the first element of the
given list and make it the first element of “rev”

71 By the time we are done, the last element from the

given list will be the first element of the finished “reVv’

Recursive Reverse

public static ListCell reverse(ListCell c) {
return reverse(c, null);

private static ListCell reverse (ListCell ¢, ListCell r) ({
if (¢ == null) return r;
return reverse (c.getNext (),
new ListCell (c.getDatum(), r));

Exercise: Turn this into an instance method

Reversing a list: Animation

reverse (c.getNext (),
reverse (c.getNext (),

new ListCell (c.getDatum(), null));

List with Header

Sometimes it is preferable to have a List class distinct from the ListCell class

The List object is like a head element that always exists even if list itself is
empty

class List {

protected Listgg;l,headrﬂ”””/”’

public List (ListCell c) {
head = c;

}
public ListCell getHead()

37

Heap

Variations on List with Header

Header can also
keep other info

Reference to last cell of list

Number of elements in list

Search/insertion/ delefion_
as instance methods) o —

head
talil

size |3

Special Cases to Worry About

o 4
11 Empty list
= add
= find
= delete
o Front of list
o insert
0 End of list
= find
= delete

01 Lists with just one element

Example: Delete from a List

Delete first occurrence of x from a list

Intuitive idea of recursive code:

If list is empty, return null
If datum at head is x, return tail

Otherwise, return list consisting of

// recursive delete

public static ListCell delete (Object x, ListCell c) {
if (¢ == null) return null;
if (c.getDatum() .equals(x)) return c.getNext() ;
c.setNext (delete(x, c.getNext())):

return c;

lterative Delete

‘head: [ListCeII:/]

Two steps:

| ISt / _
Locate cell that is the P « current

predecessor of cell to be
deleted (i.e., the cell containing

x)
Keep two cursors, scout and «—— scout
current «— current
scout is always one cell ahead
of current
Stop when scout finds cell
containing x, or falls off end «—— Scout
of list

If scout finds cell, update next

field of current cell to splice out

object x from list

Note: Need special —1

case for x in first cell
delete 36 from list

lterative Code for Delete

public void delete (Object x) {

if (head == null) return;

if (head.getDatum() .equals(x)) { //x in first cell?
head = head.getNext() ;
return;

}

ListCell current = head;

ListCell scout = head.getNext() ;

while ((scout !'= null) && !scout.getDatum() .equals(x)) ({
current = scout;
scout = scout.getNext() ;

}

if (scout !'= null) current.setNext(scout.getNext())

return;

Doubly-Linked Lists

7 In some applications, it is convenient to have a
ListCell that has references to both its

predecessor and its successor in the list.

class DLLCell {
private Object datum;
private DLILCell next;
private DLILCell prev;

Doubly-Linked vs Singly-Linked

Advantages of doubly-linked over singly-linked lists

some things are easier — e.g., reversing a doubly-linked
list can be done simply by swapping the previous and
next fields of each cell

don't need the scout to delete

Disadvantages
doubly-linked lists require twice as much space

insert and delete take more time

Java Arraylist

“Extensible array”
Starts with an initial capacity = size of underlying array

If you try to insert an element beyond the end of the array, it will
allocate a new (larger) array, copy everything over invisibly

Appears infinitely extensible

Advantages:
random access in constant time
dynamically extensible

Disadvantages:

Allocation, copying overhead

36

