
LISTS
Lecture 9

CS2110 – Fall 2013

Time spent on A2
2

 max: 25.4; avg: 5.2 hours, mean: 4.5 hours, min: 0.57 hours

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

References and Homework
3

 Text:

 Chapters 10, 11 and 12

 Homework: Learn these List methods, from
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

 add, addAll, contains, containsAll, get, indexOf,
isEmpty, lastIndexOf, remove, size, toArray

 myList = new List(someOtherList)

 myList = new List(Collection<T>)

 Also useful: Arrays.asList()

Understanding assignment A3

(1,4) (2,4) (3,4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

 A 4x4 park with the

butterfly in position

(1,1), a flower and a

cliff.

4

Understanding assignment A3

(1,4) (2,4) (3,4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

 A 4x4 park with the

butterfly in position

(1,1), a flower and a

cliff.

 The same park! The

map “wraps” as if the

park lives

on a torus!

5

(3,2) (4,2) (1,2) (2,2)

(3,1) (4,1) (1,1) (2,1)

(3,4) (4,4) (1,4) (2,4)

(3,3) (4,3) (1,3) (2,3)

Mapping Park coordinates to Java
6

 In the Park we use a column,row notation to identify cells, and have

HEIGHT columns and WIDTH rows.

 Inside Java, we use 2-D arrays that index from 0

 TileCell[][] myMap = new TileCell[Height][Width]

 But one issue is that a (column,row) coordinate in the Park has to be

“swapped” and adjusted to access the corresponding cell of myMap

 Rule:

 Save the Park Cell from Park location (r,c) at myMap[HEIGHT-c][r-1]

 myMap[x][y] tells you about Park location (y+1, HEIGHT-x)

Mapping Park coordinates to Java
7

 Rule:

 Save the Park Cell from Park location (r,c) at myMap[HEIGHT-c][r-1]

 myMap[x][y] tells you about Park location (y+1, HEIGHT-x)

 Examples: assume HEIGHT=3, WIDTH=3

 Location (1,3) = top left corner. Stored in myMap[HEIGHT-3][1-1], which

is myMap[0][0]. Converts back to (1,3)

 Location (1,1) = bottom left corner. Store in myMap[2][0].

 Location (2,2) = middle of the 3x3 Park. Store in myMap[1][1]

 Location (2,3) = top row, middle: Store in myMap[0][1]

Mapping Park coordinates to Java
8

Park

(Height=3, Width=3)

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

myMap

(Height=3, Width=3)

Mapping Park coordinates to Java
9

Park uses

(column, row)

notation

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

myMap

uses [row][column]

indexing

Example: Park (2,1) => myMap[HEIGHT-r][c-1]

 . . . myMap[3-1][2-1]: myMap[2][1]

HEIGHT=3, WIDTH=3

List Overview
10

 Purpose
 Maintain an ordered collection of elements (with possible duplication)

 Common operations
 Create a list

 Access elements of a list sequentially

 Insert elements into a list

 Delete elements from a list

 Arrays
 Random access 

 Fixed size: cannot grow or shrink after creation  (Sometimes simulated using copying)

 Linked Lists
 No random access  (Sometimes random-access is “simulated” but cost is linear)

 Can grow and shrink dynamically 

A Simple List Interface
11

 Note that Java has a more complete interface and

we do expect you to be proficient with it!

public interface List<T> {

 public void insert(T element);

 public void delete(T element);

 public boolean contains(T element);

 public int size();

}

List Data Structures

 Array
 Must specify array size at

creation

 Insert, delete require moving

elements

 Must copy array to a larger

array when it gets full

12

 Linked list

 uses a sequence of linked cells

 we will define a class ListCell from

which we build lists

24 -7 87 78

empty

24

-7

87

78

•

List Terminology

 Head = first element

of the list

 Tail = rest of the list

13

10 84 -7 1 33

tail head



Class ListCell
14

class ListCell<T> {

 private T datum;

 private ListCell<T> next;

 public ListCell(T datum, ListCell<T> next){

 this.datum = datum;

 this.next = next;

 }

 public T getDatum() { return datum; }

 public ListCell<T> getNext() { return next; }

 public void setDatum(T obj) { datum = obj; }

 public void setNext(ListCell<T> c) { next = c; }

}

Each list element “points” to

the next one!

End of list: next==null

Ways of building a Linked List

ListCell<Integer> c =

 new ListCell<Integer>(new Integer(24),null);

15

24

24

–7

87

Integer t = new Integer(24);

Integer s = new Integer(-7);

Integer e = new Integer(87);

ListCell<Integer> p =

 new ListCell<Integer>(t,

 new ListCell<Integer>(s,

 new ListCell<Integer>(e, null)));

p ListCell:

c ListCell:

Building a Linked List (cont’d)
16

24

-7

87

Integer t = new Integer(24);

Integer s = new Integer(-7);

Integer e = new Integer(87);

//Can also use "autoboxing"

ListCell<Integer> p = new ListCell<Integer>(e, null);

p = new ListCell<Integer>(s, p);

p = new ListCell<Integer>(t, p);

p ListCell:

Another way:

Note: p = new ListCell<Integer>(s,p);

does not create a circular list!

Accessing List Elements

 Linked Lists are
sequential-access data
structures.
 To access contents of cell n in

sequence, you must access cells 0
... n-1

 Accessing data in first
cell: p.getDatum()

 Accessing data in
second cell:
p.getNext().getDatum()

 Accessing next field in
second cell:
p.getNext().getNext()

17

 Writing to fields

in cells can be

done the same way

 Update data in first cell:
p.setDatum(new Integer(53));

 Update data in second cell:
p.getNext().setDatum(new

Integer(53));

 Chop off third cell:
p.getNext().setNext(null);

24

-7

87

p ListCell:

Access Example: Linear Search
18

// Here is another version. Why does this work?

public static boolean search(T x, ListCell c) {

 while(c != null) {

 if (c.getDatum().equals(x)) return true;

 c = c.getNext();

 }

 return false;

}

// Scan list looking for x, return true if found

public static boolean search(T x, ListCell c) {

 for (ListCell lc = c; lc != null; lc = lc.getNext()) {

 if (lc.getDatum().equals(x)) return true;

 }

 return false;

}

Why would we need to write code for

search? It already exists in Java utils!
19

 Good question! In practice you should always use
indexOf(), contains(), etc

 But by understanding how to code search, you gain
skills you’ll need when working with data structures
that are more complex and that don’t match
predefined things in Java utils

 General rule: If it already exists, use it. But for
anything you use, know how you would code it!

Recursion on Lists
20

 Recursion can be done on lists

 Similar to recursion on integers

 Almost always

 Base case: empty list

 Recursive case: Assume you can solve problem on the tail,
use that in the solution for the whole list

 Many list operations can be implemented very simply
by using this idea

 Although some are easier to implement using iteration

Recursive Search
21

 Base case: empty list

 return false

 Recursive case: non-empty list

 if data in first cell equals object x, return true

 else return the result of doing linear search on the tail

Recursive Search: Static method
22

public static boolean search(T x, ListCell c) {

 if (c == null) return false;

 if (c.getDatum().equals(x)) return true;

 return search(x, c.getNext());

}

public static boolean search(T x, ListCell c) {

 return c != null &&

 (c.getDatum().equals(x) || search(x, c.getNext()));

}

Recursive Search: Instance method
23

public boolean search(T x) {

 if (datum.equals(x)) return true;

 if (next == null) return false

 return next.search(x);

}

public boolean search(T x) {

 return datum.equals(x) ||

 (next!= null && next.search(x));

}

Reversing a List
24

 Given a list, create a new list with elements in reverse
order

 Intuition: think of reversing a pile of coins

 It may not be obvious how to write this recursively...

public static ListCell reverse(ListCell c) {

 ListCell rev = null;

 while(c != null) {

 rev = new ListCell(c.getDatum(), rev);

 c = c.getNext();

 }

 return rev;

}

Reversing a list: Animation
25

 Approach: One by one, remove the first element of the

given list and make it the first element of “rev”

 By the time we are done, the last element from the

given list will be the first element of the finished “rev”

24

-7

11
24

-7

11

Recursive Reverse
26

 Exercise: Turn this into an instance method

public static ListCell reverse(ListCell c) {

 return reverse(c, null);

}

private static ListCell reverse(ListCell c, ListCell r) {

 if (c == null) return r;

 return reverse(c.getNext(),

 new ListCell(c.getDatum(), r));

}

Reversing a list: Animation
27

24

-7

11

24

-7

11

new ListCell(c.getDatum(), null));

reverse(c.getNext(),

reverse(c.getNext(),

c

c.next
c

c.next c

c.next

List with Header
28

 Sometimes it is preferable to have a List class distinct from the ListCell class

 The List object is like a head element that always exists even if list itself is
empty

class List {

 protected ListCell head;

 public List(ListCell c) {

 head = c;

 }

 public ListCell getHead()

 ………

 public void setHead(ListCell c)

 ………

}

24

-7

87

Heap

head

List

Variations on List with Header
29

 Header can also

keep other info
 Reference to last cell of list

 Number of elements in list

 Search/insertion/ deletion

as instance methods

 …

24

-7

87

Heap

head

List

List

head
tail

head

List

tail

size 3

Special Cases to Worry About
30

 Empty list

 add

 find

 delete

 Front of list

 insert

 End of list

 find

 delete

 Lists with just one element

Example: Delete from a List
31

 Delete first occurrence of x from a list

 Intuitive idea of recursive code:
 If list is empty, return null

 If datum at head is x, return tail

 Otherwise, return list consisting of

 head of the list, and

 List that results from deleting x from the tail

// recursive delete

public static ListCell delete(Object x, ListCell c) {

 if (c == null) return null;

 if (c.getDatum().equals(x)) return c.getNext();

 c.setNext(delete(x, c.getNext()));

 return c;

}

Iterative Delete
32

 Two steps:
 Locate cell that is the

predecessor of cell to be
deleted (i.e., the cell containing
x)

 Keep two cursors, scout and
current

 scout is always one cell ahead
of current

 Stop when scout finds cell
containing x, or falls off end
of list

 If scout finds cell, update next
field of current cell to splice out
object x from list

 Note: Need special
case for x in first cell

-7

24

87

p List:

36

current

scout
current

scout

delete 36 from list

: head: ListCell:

Iterative Code for Delete
33

public void delete (Object x) {

 if (head == null) return;

 if (head.getDatum().equals(x)) { //x in first cell?

 head = head.getNext();

 return;

 }

 ListCell current = head;

 ListCell scout = head.getNext();

 while ((scout != null) && !scout.getDatum().equals(x)) {

 current = scout;

 scout = scout.getNext();

 }

 if (scout != null) current.setNext(scout.getNext());

 return;

}

class DLLCell {

 private Object datum;

 private DLLCell next;

 private DLLCell prev;

 …

}

Doubly-Linked Lists
34

 In some applications, it is convenient to have a

ListCell that has references to both its

predecessor and its successor in the list.

6 45 8 -9

next

prev

Doubly-Linked vs Singly-Linked
35

 Advantages of doubly-linked over singly-linked lists

 some things are easier – e.g., reversing a doubly-linked
list can be done simply by swapping the previous and
next fields of each cell

 don't need the scout to delete

 Disadvantages

 doubly-linked lists require twice as much space

 insert and delete take more time

Java ArrayList
36

 “Extensible array”

 Starts with an initial capacity = size of underlying array

 If you try to insert an element beyond the end of the array, it will
allocate a new (larger) array, copy everything over invisibly

 Appears infinitely extensible

 Advantages:

 random access in constant time

 dynamically extensible

 Disadvantages:

 Allocation, copying overhead

36

