
10/4/2013

1

LISTS
Lecture 9
CS2110 – Fall 2013

Time spent on A2
2

 max: 25.4; avg: 5.2 hours, mean: 4.5 hours, min: 0.57 hours

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

References and Homework
3

 Text:
 Chapters 10, 11 and 12

 Homework: Learn these List methods, from
http://docs.oracle.com/javase/7/docs/api/java/util/List.html

 add, addAll, contains, containsAll, get, indexOf,
isEmpty, lastIndexOf, remove, size, toArray

 myList = new List(someOtherList)
 myList = new List(Collection<T>)
 Also useful: Arrays.asList()

Understanding assignment A3

(1,4) (2,4) (3,4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

 A 4x4 park with the
butterfly in position
(1,1), a flower and a
cliff.

4

Understanding assignment A3

(1,4) (2,4) (3,4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

 A 4x4 park with the
butterfly in position
(1,1), a flower and a
cliff.

 The same park! The
map “wraps” as if the
park lives
on a torus!

5

(3,2) (4,2) (1,2) (2,2)

(3,1) (4,1) (1,1) (2,1)

(3,4) (4,4) (1,4) (2,4)

(3,3) (4,3) (1,3) (2,3)

Mapping Park coordinates to Java
6

 In the Park we use a column,row notation to identify cells, and have
HEIGHT columns and WIDTH rows.

 Inside Java, we use 2-D arrays that index from 0
 TileCell[][] myMap = new TileCell[Height][Width]

 But one issue is that a (column,row) coordinate in the Park has to be
“swapped” and adjusted to access the corresponding cell of myMap

 Rule:
 Save the Park Cell from Park location (r,c) at myMap[HEIGHT-c][r-1]

 myMap[x][y] tells you about Park location (y+1, HEIGHT-x)

10/4/2013

2

Mapping Park coordinates to Java
7

 Rule:
 Save the Park Cell from Park location (r,c) at myMap[HEIGHT-c][r-1]

 myMap[x][y] tells you about Park location (y+1, HEIGHT-x)

 Examples: assume HEIGHT=3, WIDTH=3
 Location (1,3) = top left corner. Stored in myMap[HEIGHT-3][1-1], which

is myMap[0][0]. Converts back to (1,3)

 Location (1,1) = bottom left corner. Store in myMap[2][0].

 Location (2,2) = middle of the 3x3 Park. Store in myMap[1][1]

 Location (2,3) = top row, middle: Store in myMap[0][1]

Mapping Park coordinates to Java
8

Park
(Height=3, Width=3)

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

myMap
(Height=3, Width=3)

Mapping Park coordinates to Java
9

Park uses
(column, row)

notation

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

myMap
uses [row][column]

indexing

Example: Park (2,1) => myMap[HEIGHT-r][c-1]
. . . myMap[3-1][2-1]: myMap[2][1]

HEIGHT=3, WIDTH=3

List Overview
10

 Purpose
 Maintain an ordered collection of elements (with possible duplication)

 Common operations
 Create a list
 Access elements of a list sequentially
 Insert elements into a list
 Delete elements from a list

 Arrays
 Random access
 Fixed size: cannot grow or shrink after creation (Sometimes simulated using copying)

 Linked Lists
 No random access (Sometimes random-access is “simulated” but cost is linear)
 Can grow and shrink dynamically

A Simple List Interface
11

 Note that Java has a more complete interface and
we do expect you to be proficient with it!

public interface List<T> {

public void insert(T element);

public void delete(T element);

public boolean contains(T element);

public int size();

}

List Data Structures

 Array
 Must specify array size at

creation

 Insert, delete require moving
elements

 Must copy array to a larger
array when it gets full

12

 Linked list
 uses a sequence of linked cells

 we will define a class ListCell from
which we build lists

24 -7 87 78

empty

24

-7

87

78

•

10/4/2013

3

List Terminology

 Head = first element
of the list

 Tail = rest of the list

13

10 84-7 133

tailhead

Class ListCell
14

class ListCell<T> {
private T datum;
private ListCell<T> next;

public ListCell(T datum, ListCell<T> next){
this.datum = datum;
this.next = next;

}

public T getDatum() { return datum; }
public ListCell<T> getNext() { return next; }
public void setDatum(T obj) { datum = obj; }
public void setNext(ListCell<T> c) { next = c; }

}

Each list element “points” to
the next one!

End of list: next==null

Ways of building a Linked List

ListCell<Integer> c =
new ListCell<Integer>(new Integer(24),null);

15

24

24

–7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell<Integer> p =
new ListCell<Integer>(t,

new ListCell<Integer>(s,
new ListCell<Integer>(e, null)));

p ListCell:

c ListCell:

Building a Linked List (cont’d)
16

24

-7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);
//Can also use "autoboxing"

ListCell<Integer> p = new ListCell<Integer>(e, null);
p = new ListCell<Integer>(s, p);
p = new ListCell<Integer>(t, p);

p ListCell:

Another way:

Note: p = new ListCell<Integer>(s,p);
does not create a circular list!

Accessing List Elements

 Linked Lists are
sequential-access data
structures.
 To access contents of cell n in

sequence, you must access cells 0
... n-1

 Accessing data in first
cell: p.getDatum()

 Accessing data in
second cell:
p.getNext().getDatum()

 Accessing next field in
second cell:
p.getNext().getNext()

17

 Writing to fields
in cells can be
done the same way

 Update data in first cell:
p.setDatum(new Integer(53));

 Update data in second cell:
p.getNext().setDatum(new
Integer(53));

 Chop off third cell:
p.getNext().setNext(null);

24

-7

87

p ListCell:

Access Example: Linear Search
18

// Here is another version. Why does this work?
public static boolean search(T x, ListCell c) {

while(c != null) {
if (c.getDatum().equals(x)) return true;
c = c.getNext();

}
return false;

}

// Scan list looking for x, return true if found
public static boolean search(T x, ListCell c) {

for (ListCell lc = c; lc != null; lc = lc.getNext()) {
if (lc.getDatum().equals(x)) return true;

}
return false;

}

10/4/2013

4

Why would we need to write code for
search? It already exists in Java utils!

19

 Good question! In practice you should always use
indexOf(), contains(), etc

 But by understanding how to code search, you gain
skills you’ll need when working with data structures
that are more complex and that don’t match
predefined things in Java utils

 General rule: If it already exists, use it. But for
anything you use, know how you would code it!

Recursion on Lists
20

 Recursion can be done on lists
 Similar to recursion on integers

 Almost always
 Base case: empty list
 Recursive case: Assume you can solve problem on the tail,

use that in the solution for the whole list

 Many list operations can be implemented very simply
by using this idea
 Although some are easier to implement using iteration

Recursive Search
21

 Base case: empty list
 return false

 Recursive case: non-empty list
 if data in first cell equals object x, return true

 else return the result of doing linear search on the tail

Recursive Search: Static method
22

public static boolean search(T x, ListCell c) {

if (c == null) return false;

if (c.getDatum().equals(x)) return true;

return search(x, c.getNext());

}

public static boolean search(T x, ListCell c) {
return c != null &&

(c.getDatum().equals(x) || search(x, c.getNext()));
}

Recursive Search: Instance method
23

public boolean search(T x) {

if (datum.equals(x)) return true;

if (next == null) return false

return next.search(x);

}

public boolean search(T x) {
return datum.equals(x) ||

(next!= null && next.search(x));
}

Reversing a List
24

 Given a list, create a new list with elements in reverse
order

 Intuition: think of reversing a pile of coins

 It may not be obvious how to write this recursively...

public static ListCell reverse(ListCell c) {
ListCell rev = null;
while(c != null) {

rev = new ListCell(c.getDatum(), rev);
c = c.getNext();

}
return rev;

}

10/4/2013

5

Reversing a list: Animation
25

 Approach: One by one, remove the first element of the
given list and make it the first element of “rev”

 By the time we are done, the last element from the
given list will be the first element of the finished “rev”

24

-7

11
24

-7
11

Recursive Reverse
26

 Exercise: Turn this into an instance method

public static ListCell reverse(ListCell c) {
return reverse(c, null);

}

private static ListCell reverse(ListCell c, ListCell r) {
if (c == null) return r;
return reverse(c.getNext(),

new ListCell(c.getDatum(), r));
}

Reversing a list: Animation
27

24

-7

11

24

-7
11

new ListCell(c.getDatum(), null));

reverse(c.getNext(),

reverse(c.getNext(),

c
c.next

c
c.nextc

c.next

List with Header
28

 Sometimes it is preferable to have a List class distinct from the ListCell class

 The List object is like a head element that always exists even if list itself is
empty
class List {

protected ListCell head;

public List(ListCell c) {
head = c;

}

public ListCell getHead()
………

public void setHead(ListCell c)

………

}

24

-7

87

Heap

head
List

Variations on List with Header
29

 Header can also
keep other info
 Reference to last cell of list

 Number of elements in list

 Search/insertion/ deletion
as instance methods

 …

24

-7

87

Heap

head

List

List

head
tail

head

List

tail

size 3

Special Cases to Worry About
30

 Empty list
 add
 find
 delete

 Front of list
 insert

 End of list
 find
 delete

 Lists with just one element

10/4/2013

6

Example: Delete from a List
31

 Delete first occurrence of x from a list

 Intuitive idea of recursive code:
 If list is empty, return null

 If datum at head is x, return tail

 Otherwise, return list consisting of

 head of the list, and

 List that results from deleting x from the tail

// recursive delete

public static ListCell delete(Object x, ListCell c) {

if (c == null) return null;

if (c.getDatum().equals(x)) return c.getNext();

c.setNext(delete(x, c.getNext()));

return c;

}

Iterative Delete
32

 Two steps:
 Locate cell that is the

predecessor of cell to be
deleted (i.e., the cell containing
x)
 Keep two cursors, scout and

current
 scout is always one cell ahead

of current
 Stop when scout finds cell

containing x, or falls off end
of list

 If scout finds cell, update next
field of current cell to splice out
object x from list

 Note: Need special
case for x in first cell

-7

24

87

p List:

36

current

scout
current

scout

delete 36 from list

:head: ListCell:

Iterative Code for Delete
33

public void delete (Object x) {
if (head == null) return;
if (head.getDatum().equals(x)) { //x in first cell?

head = head.getNext();
return;

}
ListCell current = head;
ListCell scout = head.getNext();
while ((scout != null) && !scout.getDatum().equals(x)) {

current = scout;
scout = scout.getNext();

}
if (scout != null) current.setNext(scout.getNext());
return;

}

class DLLCell {
private Object datum;
private DLLCell next;
private DLLCell prev;
…

}

Doubly-Linked Lists
34

 In some applications, it is convenient to have a
ListCell that has references to both its
predecessor and its successor in the list.

6 45 8 -9

next

prev

Doubly-Linked vs Singly-Linked
35

 Advantages of doubly-linked over singly-linked lists
 some things are easier – e.g., reversing a doubly-linked

list can be done simply by swapping the previous and
next fields of each cell

 don't need the scout to delete

 Disadvantages
 doubly-linked lists require twice as much space
 insert and delete take more time

Java ArrayList
36

 “Extensible array”
 Starts with an initial capacity = size of underlying array
 If you try to insert an element beyond the end of the array, it will

allocate a new (larger) array, copy everything over invisibly
 Appears infinitely extensible

 Advantages:
 random access in constant time
 dynamically extensible

 Disadvantages:
 Allocation, copying overhead

36

