

RECURSION

Lecture 6

Overview references to sections in text

\square Note: We've covered everything in JavaSummary.pptx!
\square What is recursion? 7.1-7.39 slide 1-7
\square Base case 7.1-7.10 slide 13
\square How Java stack frames work 7.8-7.10 slide 28-32

Homework. Copy our "sum the digits" method but comment out the base case. Now run it: what happens in Eclipse?

Now restore the base case. Use Eclipse in debug mode and put a break statement on the "return" of the base case. Examine the stack and look at arguments to each level of the recursive call.

Recursion

\square Arises in three forms in computer science
\square Recursion as a mathematical tool for defining a function in terms of its own value in a simpler case
\square Recursion as a programming tool. You've seen this previously but we'll take it to mind-bending extremes (by the end of the class it will seem easy!)
\square Recursion used to prove properties about algorithms. We use the term induction for this and will discuss it later.

Recursion as a math technique

\square Broadly, recursion is a powerful technique for specifying functions, sets, and programs
\square A few recursively-defined functions and programs

- factorial
- combinations
\square exponentiation (raising to an integer power)
\square Some recursively-defined sets
\square grammars
\square expressions
\square data structures (lists, trees, ...)

Example: Sum the digits in a number

$/ * *$ return sum of digits in n, given $n>=0 * /$ public static int sum(int n) \{
if $(\mathrm{n}<10)$ return $\mathrm{n} ; \quad$ sum calls itself!
$/ /\{n$ has at least two digits $\}$
// return first digit + sun of rest return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
\}
$\square E . g \cdot \operatorname{sum}(87012)=2+(1+(0+(7+8)))=18$

Example: Is a string a palindrome?

```
/** = "s is a palindrome" */
public static boolean isPal(String s) {
    if (s.length()<=1)
        return true;
```


Substring from

```
    s[1] to s[n-1]
// \{ s has at least 2 chars \}
int \(\mathrm{n}=\mathrm{s}\).length()-1;
return \(\operatorname{s.charAt}(0)==\operatorname{s.charAt}(\mathrm{n}) \& \&\) isPal(s.substring(1, n));
``` \}
\(\square\) isPal("racecar") = true
\(\square\) isPal("pumpkin") = false

\section*{Count the e's in a string}
/** = "number of times c occurs in s */ public static int countEm(char c , String s) \{
if (s.length ()\(==0\)) return 0 ;
// \(\{\mathrm{s}\) has at least 1 character \(\}\)
if (\(\mathrm{s} . \operatorname{charAt}(0)!=\mathrm{c})\)

\section*{Substring s[1..], i.e. s[1], ..., \(\mathrm{s}(\mathrm{S} . l \mathrm{length}()-1)\)} return countEm(c, s.substring(1));
// \{ first character of \(s\) is \(c\) \}
return \(1+\) countEm (c, s.substring(1));
\}
\(\square\) countEm('e', "it is easy to see that this has many e's") \(=4\)
\(\square\) countEm('e', "Mississippi") \(=0\)

\section*{The Factorial Function (n!)}
\(\square\) Define \(n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1\) read: " \(n\) factorial"
\[
\text { E.g. } 3!=3 \cdot 2 \cdot 1=6
\]
\(\square\) Looking at definition, can see that \(n!=n *(n-1)\) !
\(\square\) By convention, 0! = 1
\(\square\) The function int \(\rightarrow\) int that gives \(n\) ! on input \(n\) is called the factorial function

\section*{The Factorial Function (n!)}
\(\square \mathrm{n}\) ! is the number of permutations of n distinct objects
\(\square\) There is just one permutation of one object. \(1!=1\)
\(\square\) There are two permutations of two objects: \(2!=2\) 1221
\(\square\) There are six permutations of three objects: 3 ! \(=6\)
\(123132 \quad 213231 \quad 312321\)
\(\square\) If \(n>0, n!=n \cdot(n-1)!\)

\section*{Permutations of \(\square \square \square\)}

Permutations of
non-orange blocks

Each permutation of the three nonorange blocks gives four permutations when the orange block is included
\(\square\) Total number \(=4 \cdot 3!=4 \cdot 6=24: 4!\)

\section*{Observation}
\(\square\) One way to think about the task of permuting the four colored blocks was to start by computing all permutations of three blocks, then finding all ways to add a fourth block
\(\square\) And this "explains" why the number of permutations turns out to be 4!
\(\square\) Can generalize to prove that the number of permutations of \(n\) blocks is \(n\) !

\section*{A Recursive Program}
\[
\begin{aligned}
& 0!=1 \\
& \mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-1)!, \mathrm{n}>0
\end{aligned}
\]
\[
/ \star *=n!\text {, for } n>=0 * /
\]
\[
\text { static int fact(int } n)\{
\]
\[
\text { if }(\mathrm{n}==0)
\]
\[
\text { return } 1 ;
\]
\[
/ /\{n>0\}
\]
\[
\text { return } \mathrm{n}^{\star} f a c t(\mathrm{n}-1) \text {; }
\]

Execution of fact(4)

\section*{General Approach to Writing Recursive}

\section*{Functions}
1. Try to find a parameter, say n , such that the solution for \(n\) can be obtained by combining solutions to the same problem using smaller values of \(n\) (e.g. (\(n-1\)) in our factorial example)
2. Find base case(s) - small values of \(\mathbf{n}\) for which you can just write down the solution (e.g. \(0!=1\))
3. Verify that, for any valid value of \(n\), applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

\section*{A cautionary note}
\(\square\) Keep in mind that each instance of the recursive function has its own local variables
\(\square\) Also, remember that "higher" instances are waiting while "lower" instances run
\(\square\) Do not touch global variables from within recursive functions
\(\square\) Legal... but a common source of errors
\(\square\) Must have a really clear mental picture of how recursion is performed to get this right!

\section*{The Fibonacci Function}
\(\square\) Mathematical definition:
\[
\begin{aligned}
& \mathrm{fib}(0)=0 \\
& \mathrm{fib}(1)=1 \\
& \mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2), \mathrm{n} \geq \mathbf{2}
\end{aligned}
\]

Fibonacci sequence: \(0,1,1,2,3,5,8,13, \ldots\)
```

/** = fibonacci(n), for n >= 0 */
static int fib(int n) {
if (n <= 1) return n;
// { 1 < n }
return fib(n-2) + fib(n-1);

```
\}

Fibonacci (Leonardo
Pisano) 1170-1240?

Statue in Pisa, Italy
Giovanni Paganucci
1863

\section*{Recursive Execution}
```

/** = fibonacci(n), for n >= 0 */
static int fib(int n) {
if (n <= 1) return n;
// { 1 < n }
return fib(n-2) + fib(n-1);
}

```

Execution of fib(4): fib(4)

\section*{One thing to notice}
\(\square\) This way of computing the Fibonacci function is elegant but inefficient
\(\square\) It "recomputes" answers again and again!
\(\square\) To improve speed, need to save known answers in a table!
\(\square\) One entry per answer
\(\square\) Such a table is called a cache

\section*{Memoization (fancy term for "caching")}
\(\square\) Memoization is an optimization technique used to speed up computer programs by having function calls avoid repeating the calculation of results for previously processed inputs.
\(\square\) The first time the function is called, save result
\(\square\) The next time, look the result up
- Assumes a "side effect free" function: The function just computes the result, it doesn't change things
- If the function depends on anything that changes, must "empty" the saved results list

\section*{Adding Memoization to our solution}
\(\square\) Before memoization:
```

static int fib(int n) {
if (n <= 1) return n;
else
return fib(n-2) + fib(n-1);

```
\}

The list used to memoize
** For \(0<=\mathrm{k}\) < cached.size(), cached[k] = fib(k) */ static ArrayList<Integer> cached= new ArrayList<Integer>();

\section*{After Memoization}
```

** For 0 <= k < cached.size(), cached[k]= fib(k) */
static ArrayList<Integer> cached= new ArrayList<Integer>();
static int fib(int n) {
if (n < cached.size()) return cached.get(n);
int v;
if ( }\textrm{n}<=1\mathrm{ )
v= n;
else v= fib(n-2) + fib(n-1);
if ( }\textrm{n}===\mathrm{ cached.size())
cached.add(v);
return v;

```

This appends \(v\) to cached, keeping cached's definition true

\section*{Notice the development process}
\(\square\) We started with the idea of recursion
\(\square\) Created a very simple recursive procedure
\(\square\) Noticed it will be slow, because it wastefully recomputes the same thing again and again
\(\square\) So made it a bit more complex but gained a lot of speed in doing so
\(\square\) This is a common software engineering pattern

\section*{Why did it work?}
\(\square\) This cached list "works" because for each value of \(n\), either cached.get(\(n\)) is still undefined, or has fib(n)
\(\square\) Takes advantage of the fact that an ArrayList adds elements at the end, and indexes from 0
cached@BA8900, size=5

Property of our code: cached.get(n) accessed after fib(n) computed

\section*{Positive Integer Powers}
\(\square a^{n}=a \cdot a \cdot a \cdot \cdot \cdot a\) (\(n\) times)
\(\square\) Alternative description:
\(\square a^{0}=1\)
\(\square a^{n+1}=a \cdot a^{n}\)
\(/ * *=a^{n}\), given \(n>=0\) */
static int power (int \(a\), int \(n\)) \{
if (\(\mathrm{n}==0\)) return 1 ;
else return a*power (a,n-1);

\section*{A Smarter Version}
\(\square\) Power computation:
\(\square a^{0}=1\)
- If \(n\) is nonzero and even, \(a^{n}=\left(a^{*} a\right)^{n / 2}\)
\(\square\) If \(n\) is nonzero, \(a^{n}=a^{*} a^{n-1}\)
■ Java note: For ints \(x\) and \(y, ~ " x / y\) " is the integer part of the quotient
\(\square\) We'll see that judicious use of the second property makes this a logarithmic algorithm, as we will see

Example: \(3^{8}=(3 * 3) *(3 * 3) *(3 * 3) *(3 * 3)=(3 * 3)^{4}\)

\section*{Smarter Version in Java}
\(\square \mathrm{n}=0: \mathrm{a}^{0}=1\)
\(\square \mathrm{n}\) nonzero and even: \(a^{n}=\left(a^{*} a\right)^{n / 2}\)
\(\square n\) nonzero: \(a^{n}=a \cdot a^{n-1}\)
```

/** = a**n, for n >= 0 */
static int power(int a, int n) {
if (n == 0) return 1;
if (n%2 == 0) return power(a*a, n/2);
return a * power(a, n-1);
}

```

\section*{Build table of multiplications}
\begin{tabular}{|c|c|c|c|}
\hline n & n & mults & \multirow[t]{3}{*}{Start with \(\mathrm{n}=0\), then \(\mathrm{n}=1\), etc., for each, calculate number of mults based on method body and recursion.} \\
\hline 0 & & 0 & \\
\hline 1 & 2**0 & 1 & \\
\hline 2 & 2**1 & 2 & \multirow[t]{3}{*}{See from the table: For \(n\) a power of 2 , \(\mathrm{n}=2 * * \mathrm{k}\), only \(\mathrm{k}+1=(\log \mathrm{n})+1\) mults} \\
\hline 3 & & 3 & \\
\hline 4 & 2**2 & 3 & \\
\hline 5 & & 4 & \multirow[t]{2}{*}{For \(\mathrm{n}=2 * 15=32768\), only 16 mults!} \\
\hline 6 & & 4 & \\
\hline 7 & & 4 & \\
\hline 8 & \(2^{* * 3}\) & 4 & \multirow[t]{3}{*}{```
static int power(int a, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(a*a, n/2);
 return a * power(a, n-1);
```} \\
\hline 9 & & 5 & \\
\hline ... & & & \\
\hline 16 & \(2 * * 4\) & 5 & \\
\hline
\end{tabular}

\section*{Another way to look at function}
\(\square\) Recursive function processes binary representation of exponent \(n\).
\(\square\) Suppose \(\mathrm{n}=10\), which in binary is 1010
\(\square\) Test if n is even ( \(\mathrm{n} \% 2==0\) ): is last bit 0 ?
\(\square\) Operation \(\mathrm{n} / 2\) : delete last bit (1010) becomes 101)
\(\square\) Operation \(\mathrm{n}-1\) (when n is odd): change last 1 to 0
\(\square\) Each bit is processed at most twice -once to change a 1 into a 0
\(\square\) Length of binary rep is log of number.

\section*{How Java "compiles" recursive code}
\(\square\) Key idea:
\(\square\) Java uses a stack to remember parameters and local variables across recursive calls
\(\square\) Each method invocation gets its own stack frame
\(\square\) A stack frame contains storage for
\(\square\) Local variables of method
\(\square\) Parameters of method
\(\square\) Return info (return address and return value)
\(\square\) Perhaps other bookkeeping info

\section*{Stacks}
stack grows
\begin{tabular}{|c|}
\hline top element \\
\hline 2nd element \\
\hline 3rd element \\
\hline\(\ldots\) \\
\hline\(\ldots\) \\
\hline \begin{tabular}{c} 
bottom \\
element
\end{tabular} \\
\hline
\end{tabular}
top-of-stack

\section*{pointer}
\(\square\) Like a stack of dinner plates
\(\square\) You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
\(\square\) A queue is similar, except it is FIFO (first-in-first-out)

\section*{Stack Frame}
\(\square\) A new stack frame is pushed with each recursive call

- Leaving a return value (if there is one) on top of the stack

\section*{Example: power(2, 5)}


\section*{How Do We Keep Track?}
\(\square\) Many frames may exist, but computation occurs only in the top frame
\(\square\) The ones below it are waiting for results
\(\square\) The hardware has nice support for this way of implementing function calls, and recursion is just a kind of function call

\section*{Conclusion}
\(\square\) Recursion is a convenient and powerful way to define functions
\(\square\) Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:
\(\square\) Reduce a big problem to smaller problems of the same kind, solve the smaller problems
\(\square\) Recombine the solutions to smaller problems to form solution for big problem
\(\square\) Important application (next lecture): parsing

\section*{Extra slides}
\(\square\) For use if we have time for one more example of recursion

This builds on the ideas in the Fibonacci example

\section*{Combinations \\ (a.k.a. Binomial Coefficients)}
\(\square\) How many ways can you choose \(r\) items from a set of \(n\) distinct elements? \(\binom{n}{r}\) " \(n\) choose \(r\) "
\(\binom{5}{2}=\) number of 2-element subsets of \(\{A, B, C, D, E\}\)
2-element subsets containing \(A\) :
\(\binom{4}{1}\) \(\{A, B\},\{A, C\},\{A, D\},\{A, E\}\)
2-element subsets not containing \(A:\{B, C\},\{B, D\},\{B, E\},\{C, D\},\{C, E\},\{D, E\}\)
\(\square\) Therefore, \(\binom{5}{2}=\binom{4}{1}^{+} \quad\binom{4}{2}\)
\(\square \ldots\) in perfect form to write a recursive function!

\section*{Combinations}
\[
\begin{aligned}
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0 \\
& \left(\begin{array}{l}
n \\
n \\
n
\end{array}\right)=1 \\
& \binom{n}{0}=1 \quad \text { Can also show that } \quad\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
& \binom{0}{0} \\
& \binom{1}{0} \quad\binom{1}{1} \\
& \text { Pascal's } \\
& 1 \\
& \binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& \text { triangle } \\
& 11 \\
& \binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \\
& \binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \\
& \begin{array}{llll}
= & 1 & 2
\end{array} \\
& 1 \begin{array}{llll}
1 & 3 & 3
\end{array} \\
& \binom{4}{0} \quad\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4} \\
& 14 \\
& 6 \quad 41
\end{aligned}
\]

\section*{Binomial Coefficients}

Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial power \((\mathbf{x}+\mathbf{y})^{\mathbf{n}}\) :
\[
\begin{aligned}
(x & +y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} y^{n} \\
& =\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
\end{aligned}
\]

\section*{Combinations Have Two Base Cases}
\[
\begin{aligned}
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0 \\
& \binom{n}{n}=1 \\
& \binom{n}{0}=1 \quad \text { Two base cases }
\end{aligned}
\]
\(\square\) Coming up with right base cases can be tricky!
\(\square\) General idea:
\(\square\) Determine argument values for which recursive case does not apply
\(\square\) Introduce a base case for each one of these

\section*{Recursive Program for Combinations}
\[
\left.\left.\begin{array}{l}
\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0 \\
n \\
n \\
n
\end{array}\right)=1 \quad \begin{array}{l}
n \\
0
\end{array}\right)=1 \quad l
\]
/** \(=\) no. combinations of \(n\) things taking \(r\) at a time.
Precondition: \(0<=r<=n\) */
static int combs (int \(n\), int \(r\) ) \(\{\)
if ( \(r=0\) || \(r==n\) ) return 1; //base cases
else return combs ( \(n-1, r\) ) + combs ( \(n-1, r-1\) );

\section*{Exercise for the reader (you!)}
\(\square\) Modify our recursive program so that it caches results
\(\square\) Same idea as for our caching version of the fibonacci series
\(\square\) Question to ponder: When is it worthwhile to adding caching to a recursive function?
- Certainly not always...
\(\square\) Must think about tradeoffs: space to maintain the cached results vs speedup obtained by having them

\section*{Something to think about}
\(\square\) With fib(), it was kind of a trick to arrange that: \(\operatorname{cached}[\mathrm{n}]=\mathrm{fib}(\mathrm{n})\)
\(\square\) Caching combinatorial values will force you to store more than just the answer:
\(\square\) Create a class called Triple
\(\square\) Design it to have integer fields \(n, r, v\)
\(\square\) Store Triple objects into ArrayList<Triple> cached;
\(\square\) Search cached for a saved value matching \(n\) and \(r\)
- Hint: use a foreach loop```

