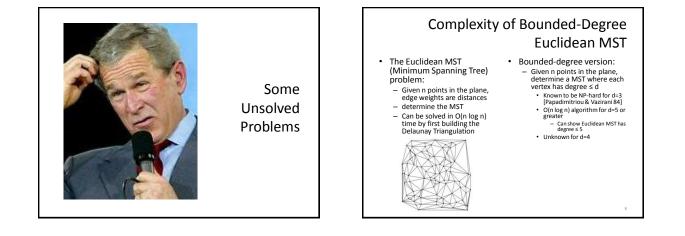


Programming Concepts

- **Object-Oriented Programming** Classes and objects
 - Primitive vs. reference types
 - Dynamic vs. static types
 Subtypes and Inheritance
 - - OverridingShadowing
 - Overloading
 - Upcasting & downcasting Inner & anonymous classes
- Recursion
- Divide and conquer
- Stack frames
- Exceptions

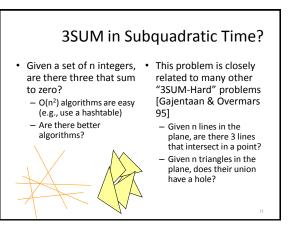
- Interfaces and Types Type hierarchy vs. class hierarchy
- Generic types
- The Comparable interface
- Design patterns: Iterator, Observer (GUI), etc.
- GUIs
 - Components, Containers, Layout Managers
- Events & listeners
- · Concurrency and Threads
 - Locking Race conditions
 - Deadlocks

- Arrays
- Lists (Singly- and doubly-linked) Trees
- Asymptotic analysis (big-O) Induction
- Solving recurrences
- Lower bound on sorting Grammars & parsing
- Searching
- Linear- vs. binary-search
- Sorting
 - Insertion-, Selection-, Merge-, Quick-, and Heapsort


- Data Structure Concepts
 - Useful ADTs (& implementations) - Stacks & Queues
 - Arrays & lists
 - Priority Queues HeapsArray of gueues
 - Sets & Dictionaries
- Arrays & lists
 Hashing & Hashtables
 Binary Search Trees (BSTs)
 - Graphs...

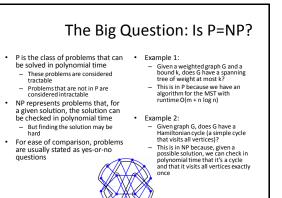
Data Structure Concepts

- · Graphs
 - Mathematical definition of a graph (directed, undirected)
 - Representations · Adjacency matrix · Adjacency list
 - Topological sort
 - Coloring
 - Searching (BFS & DFS)


- Shortest paths
- Minimum Spanning
- Trees (MSTs)
- · Prim's algorithm
- Kruskal's algorithm

- What else is there in CS?
- CS2110 + Math is sufficient prerequisite for many 4000-level Computer Science classes!
- Areas of Computer Science:
 - Artificial Intelligence
 - Network Science
 - Software Engineering
 - Computer Graphics
 - Natural Language Processing
 - Programming Languages
 - Security and Trustworthy Systems
 - Databases
 - Operating Systems
 - Theory of Computing

Complexity of Euclidean MST in R^d


- Given n points in dimension d, determine the MST
 - Is there an algorithm with runtime close to the O(n log n)?
 - Can solve in time
 O(n log n) for d=2
- For large d, it appears that runtime approaches O(n²)
 - Best algorithms for general graphs run in time linear in
 - m = number of edgesBut for Euclidean distances on points, the
 - distances on points, the number of edges is m = n(n-1)/2

Winning Strategies for the Parity Game?

- Played on a directed graph with nodes 0, 1, 2, ..., n-1
 Start with a pebble on node 0
 - Players Steven and Todd alternately choose edges along which to push the pebble
 - They play forever...
 - Who wins? — Steven wins if the least-numbered vertex visited infinitely often is even
 - Todd wins if the least-numbered vertex visited infinitely often is odd
 - It is known that for any graph, either Steven or Todd has a winning strategy but can you determine which?
 - strategy but can you determine which?
 Equivalent to a major open problem in logic

Current Status: P vs. NP

- It's easy to show that $\mathsf{P}\subseteq\mathsf{NP}$
 - Most researchers believe that P ≠ NP
 - But at present, no proof
 - We do have a large collection of NP-complete problems
 - of NP-complete problems
 If any NP-complete problem has a polynomial time algorithm, then they all do
- A problem B is NP-complete if

 it is in NP
 - any other problem in NP reduces to it efficiently
- Thus by making use of an imaginary fast subroutine for B, any problem in NP could be solved in polynomial time
 - the Boolean satisfiability problem is NP-complete [Cook 1971]
 - many useful problems are NPcomplete [Karp 1972]
 - By now thousands of problems are known to be NP-complete

Some NP-Complete Problems

- Graph coloring: Given graph G and bound k, is G k-colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling salesperson: Given weighted graph G and bound k, is there a cycle of cost ≤ k that visits each vertex at least once?
- Hamiltonian cycle: Give graph G, is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of items i with weights w_i and values v_i, and numbers W and V, does there exist a subset of at most W items whose total value is at least V?
- What if you really need an algorithm for an NP-complete problem?
 - Some special cases can be solved in polynomial time
 If you're lucky, you have such a special case
 - Otherwise, once a problem is shown to be NP-complete, the best strategy is to start looking for an approximation
 - For a while, a new proof showing a problem NP-complete was enough for a paper - Nowadays, no one is interested unless the result is somehow

unexpected

_. . _

- Time and Place
 - Thursday, May 12
 - 2:00pm 4:30pm
 - Baker Laboratory 200 (BKL200)
- Review Session
 - Wednesday, May 11
 - 3:30pm 5:00pm
 - Kimball B11

Final Exam

- Exam Conflicts

 Email me TODAY!
- Office Hours
 - Continue until final exam
 - But there may be time changes...

Course Evaluations (2 Parts)

- CourseEval
 - Worth 0.5% of your course grade
 - Anonymous
 - We get a list of who completed the course evaluations and a list of responses, but no link between names & responses
 - http://www.engineering.cornell.edu/CourseEval
- CMS Survey
 - Worth another 0.5% of your course grade
 - Not anonymous
 - But no confidential questions

Becoming a Consultant

- Jealous of the glamorous life of a CS consultant?
 - We're recruiting next-semester consultants for CS1110 and CS2110
 - Interested students should fill out an application, available in 303 Upson

