

Programming Concepts

- Object-Oriented Programming
- Classes and objects
- Primitive vs. reference types
- Dynamic vs. static types
- Subtypes and Inheritance

Shadowing
Overloading

- Upcasting \& downcasting
- Inner \& anonymous classes
- Recursion
- Divide and conquer
- Stack frames
- Exceptions
- Interfaces and Types - Type hierarchy vs. class hierarchy
- Generic types
- The Comparable interface
- Design patterns: Iterator, Observer (GUI), etc.
- GUls
- Components, Containers,

Layout Managers
Events \& listeners

- Concurrency and Threads
- Locking
- Race conditions
- Deadlocks

Course Overview

- Programming Concepts
- Object-Oriented

Programming

- Interfaces and Types
- Recursion
- Graphical User Interfaces (GUls)
- Concurrency and Threads
\rightarrow we use Java, but the goal is to understand the ideas rather than to become a Java expert
- Data-Structure Concepts
- Induction
- Asymptotic analysis (big-O)
- Arrays, Trees, and Lists
- Searching \& Sorting
- Stacks \& Queues
- Priority Queues
- Sets \& Dictionaries
- Graphs
\rightarrow develop skill with a set of tools that are widely useful

Operational Knowledge

- Basic building blocks
- Arrays
- Lists (Singly- and doubly-linked)
- Trees
- Asymptotic analysis (big-O)
- Induction
- Solving recurrences
- Lower bound on sorting
- Grammars \& parsing
- Searching
- Linear- vs. binary-search

Data Structure Concepts

- Sorting
- Insertion-, Selection-, Merge-Quick-, and Heapsort

Data Structure Concepts

- Graphs
- Shortest paths
- Minimum Spanning

Trees (MSTs)

- Prim's algorithm
- Kruskal's algorithm
- Representations
- Adjacency matrix
- Adjacency list
- Topological sort
- Coloring
- Searching (BFS \& DFS)

What else is there in CS?

- CS2110 + Math is sufficient prerequisite for many 4000-level Computer Science classes!
- Areas of Computer Science:
- Artificial Intelligence
- Network Science
- Software Engineering
- Computer Graphics
- Natural Language Processing
- Programming Languages
- Security and Trustworthy Systems
- Databases
- Operating Systems
- Theory of Computing

Complexity of Bounded-Degree Euclidean MST

- The Euclidean MST (Minimum Spanning Tree) problem:
- Given n points in the plane, edge weights are distances
- determine the MST
- Can be solved in O(n $\log \mathrm{n}$) time by first building the Delaunay Triangulation

- Bounded-degree version:
- Given n points in the plane, determine a MST where each vertex has degree $\leq \mathrm{d}$
- Known to be NP-hard for $\mathrm{d}=3$
[Papadimitriou \& Vazirani 84] - On $\underset{\text { greater }}{ }$ n

Can show E
degree ≤ 5 own for d=4

Complexity of Euclidean MST in R ${ }^{d}$

- Given n points in dimension d, determine the MST
- Is there an algorithm with runtime close to the $O(n \log n)$?
- Can solve in time $O(n \log n)$ for $d=2$
- For large d, it appears that runtime approaches $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Best algorithms for general graphs run in time linear in $\mathrm{m}=$ number of edges
- But for Euclidean distances on points, the number of edges is $\mathrm{m}=\mathrm{n}(\mathrm{n}-1) / 2$

3SUM in Subquadratic Time?

- Given a set of n integers, - This problem is closely are there three that sum to zero?
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithms are easy (e.g., use a hashtable)
- Are there better algorithms?
 related to many other "3SUM-Hard" problems [Gajentaan \& Overmars 95]
- Given n lines in the plane, are there 3 lines that intersect in a point?
- Given n triangles in the plane, does their union have a hole?

Winning Strategies for the Parity Game?

Played on a directed graph with nodes $0,1,2, \ldots, n-1$

- Start with a pebble on node 0
- Players Steven and Todd alternately choose edges along which to push the pebble
- They play forever..
- Who wins?
- Steven wins if the least-numbered vertex visited infinitely often is even
- Todd wins if the least-numbered vertex visited infinitely often is odd
- It is known that for any graph, either Steven or Todd has a winning strategy - but can you determine which?
- Equivalent to a major open problem in logic

The Big Question: Is $\mathrm{P}=\mathrm{NP}$?

- P is the class of problems that can be solved in polynomial time tractable
Problems that are not in P are considered intractable
NP represents problems that, for a given solution, the solution can be checked in polynomial time

But finding the solution may be But fi
hard

- For ease of comparison, problems are usually stated as yes-or-no questions
- Example 1:
- Given a weighted graph G and a bound k, does G have a spanning tree of weight at most k ?
- This is in P because we have an algorithm for the MST with
runtime $O(m+n \log n)$
- Example 2:
- Given graph G, does G have a Hamiltonian cycle (a simple cycle that visits all vertices)?
- This is in NP because, given a possible solution, we can check in polynomial time that it's a cycle and that it visits all vertices exactly
once

Current Status: P vs. NP

- It's easy to show that $P \subseteq N P$
- Most researchers believe that $P \neq N P$
- But at present, no proof
- We do have a large collection
of NP-complete problems
- If any NP-complete problem has a polynomial time algorithm,
then they all do
- A problem B is NP-complete if
- it is in NP
- any other problem in NP reduces to it efficiently
- Thus by making use of an imaginary fast subroutine for B, any problem in NP could be solved in polynomial time
- the Boolean satisfiability problem is NP-complete [Cook 1971]
- many useful problems are NPcomplete [Karp 1972]
- By now thousands of problems are known to be NP-complete

Some NP-Complete Problems

- Graph coloring: Given graph G and bound k , is G k-colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling salesperson: Given weighted graph G and bound k , is there a cycle of cost $\leq k$ that visits each vertex at least once?
- Hamiltonian cycle: Give graph G is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of items i with weights w_{i} and values v_{i}, and numbers W and V, does there exist a subset of at most W items whose total value is at least V ?
- What if you really need an algorithm for an NP-complete problem?

Some special cases can be solved in
polynomial time polynomial time

If you're lucky, you have such Otherwise onc
Otherwise, once a problem is shown to be NP-complete, the best
strategy is to start looking for an approximation

- For a while, a new proof showing a problem NP-complete was enough for a paper
- Nowadays, no one

Nowadays, no one is interested unless the re

Final Exam

- Time and Place
- Thursday, May 12
- 2:00pm-4:30pm
- Baker Laboratory 200 (BKL200)
- Review Session
- Wednesday, May 11
- 3:30pm-5:00pm
- Kimball B11
- Exam Conflicts
- Email me TODAY!
- Office Hours
- Continue until final exam
- But there may be time changes...

Course Evaluations (2 Parts)

- CourseEval
- Worth 0.5% of your course grade
- Anonymous
- We get a list of who completed the course evaluations and a
list of responses, but no link between names \& responses
- http://www.engineering.cornell.edu/CourseEval
- CMS Survey
- Worth another 0.5% of your course grade
- Not anonymous
- But no confidential questions

Becoming a Consultant

- Jealous of the glamorous life of a CS consultant?
- We're recruiting next-semester consultants for CS1110 and CS2110
- Interested students should fill out an application, available in 303 Upson

