CS/ENGRD 2110
Object-Oriented Programming
 and Data Structures

Spring 2011

Thorsten Joachims

Lecture 23: Recurrences

Analysis of Merge-Sort

- Recurrence:
$-T(n)=c+d+e+f+2 T(n / 2)+g n+h$
$-\mathrm{T}(1)=\mathrm{i}$
- First, simplify by dropping lower-order terms and replacing constants by their max
$-T(n)=2 T(n / 2)+a n$
$-T(1)=b$
- Simplify even more. Consider only the number of comparisons.
$-T(n)=2 T(n / 2)+n$
$-T(1)=0$
- How do we find the solution?

Analysis of Merge-Sort

- Recurrence describing computation time:
$-\mathrm{T}(\mathrm{n})=\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{gn}+\mathrm{h} \leftarrow$ recurrence
$-\mathrm{T}(1)=\mathrm{i}$
\leftarrow base case
- How do we solve this recurrence?

Solving Recurrences

- Unfortunately, solving recurrences is like solving differential equations
- No general technique works for all recurrences
- Luckily, can get by with a few common patterns
- You learn some more techniques in CS2800

Analysis of Merge-Sort

- Recurrence for number of comparisons of MergeSort
$-T(n)=2 T(n / 2)+n$
$-T(1)=0$
$-T(2)=2$
- To show: $T(n)$ is $O(n \log (n))$ for $n \in\{2,4,8,16,32, \ldots\}$
- Restrict to powers of two to keep algebra simpler
- Proof: use induction on $n \in\{2,4,8,16,32, \ldots\}$
- Show $P(n)=\{T(n) \leq c n \log (n)\}$ for some fixed constant c.
- Base: P(2)
- $T(2)=2 \leq c 2 \log (2) u$ sing $c=1$
- Strong inductive hypothesis: $\mathrm{P}(\mathrm{m})=\{\mathrm{T}(\mathrm{m}) \leq \mathrm{cm} \log (\mathrm{m})\}$ is true for all $m \in\{2,4,8,16,32, \ldots, k\}$.
- Induction step: $P(2) \wedge P(4) \wedge \ldots \wedge P(k) \rightarrow P(2 k)$

$=c(2 k)(\log (k)+1)=c(2 k) \log (2 k)$ for $c \geq 1$

Solving Recurrences

- Recurrences are important when using divide \& conquer to design an algorithm
- Solution techniques:
- Can sometimes change variables to get a simpler recurrence
- Make a guess, then prove the Make a guess, then prove th
guess correct by induction
- Build a recursion tree and use it to determine solution
- Can use the Master Method - A "cookbook" scheme that handles many
recurrences

Master Method
To solve $T(n)=a T(n / b)+f(n)$ compare $f(n)$ with $n^{\log _{5} a}$

- Solution is $T(n)=O(f(n))$ if $f(n)$ grows more rapidly
- Solution is $T(n)=O\left(n^{\log _{b} a}\right)$ if nlog ${ }_{\mathrm{b}}$ a grows more rapidly
- Solution is $T(n)=O(f(n) \log n)$ if both grow at same rate

Not an exact statement of the theorem - $f(n)$ must be "wellbehaved"

Recurrence Examples

Some common cases:

- $T(n)=T(n-1)+1$
$\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
Linear Search
- $T(n)=T(n-1)+n \quad T(n)=O\left(n^{2}\right) \quad$ QuickSort worst-case
- $T(n)=T(n / 2)+1 \quad T(n)=O(\log n) \quad$ Binary Search
- $T(n)=T(n / 2)+n$
$T(n)=O(n)$
- $T(n)=2 T(n / 2)+n$
$T(n)=O(n \log n)$ MergeSort
- $T(n)=2 T(n-1)$
$T(n)=O\left(2^{n}\right)$

	10	50	100	300	1000
ถั	50	250	500	1500	5000
등	33	282	665	2469	9966
※	100	2500	10,000	90,000	1,000,000
$\stackrel{0}{5}$	1000	125,000	1,000,000	27 million	1 billion
సิ	1024	a 16 -digit number	a 31-digit number	a 91-digit number	a 302-digit number
こ	3.6 million	a 65-digit number	a 161 -digit number	a 623-digit number	unimaginably large
¢	10 billion	an 85 -digit number	a. 201-digit number	a 744-digit number	unimaginably large
- protons in the known universe ~ 126 digits - (sec since the big bang ~ 24 digits - Source: D. Harel, Algorithmics					

The Fibonacci Function

- Mathematical definition:
$-\mathrm{fib}(0)=0$
$-\mathrm{fib}(1)=1$
$-\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2), \mathrm{n} \geq 2$
int fib(int n)

Fibonacci (Leonardo Pisano) 1170■1240? Statue in Pisa, Italy Giovanni Paganucci

- Fibonacci sequence: $0,1,1,2,3,5,8,13, \ldots$

Recursive Execution

The Fibonacci Recurrence

- Recurrence for computation time:

$$
\begin{aligned}
& -T(0)=a \\
& -T(1)=a \\
& -T(n)=T(n-1)+T(n-2)+a
\end{aligned}
$$

- What is computation time?

Analysis of Recursive Fib

- Recurrence for number of comparisons of MergeSort
$-T(0)=a$
$-\mathrm{T}(1)=\mathrm{a}$
$-T(n)=T(n-1)+T(n-2)+a$
- To show: $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(2^{n}\right)$
- Proof: use induction on n
- Show $P(n)=\left\{T(n) \leq c 2^{\wedge} n\right\}$ for some fixed constant c.
- Basis: P(0)
- $T(0)=a \leq c 2^{0} u s i n g c=a$
- Basis: P(1)
- $\mathrm{T}(1)=\mathrm{a} \leq \mathrm{c} 2^{1}$ using $\mathrm{c}=\mathrm{a}$
- Strong inductive hypothesis: $\left.P(m)=\left\{T(m) \leq c 2^{\wedge}\right\}\right\}$ is true for all $m \leq k$.
- Induction step: $P(0) \wedge \ldots \wedge P(k) \rightarrow P(k+1)$
- $T(k+1) \leq T(k)+T(k-1)+a \leq c 2^{n}+c 2^{n-1}+a=c 3 / 42^{n+1}+a \leq c 2^{n+1}$
for any $c \geq 1 / 4$ and any $n \geq 2$. for any $\mathrm{c} \geq 1 / 4 \mathrm{a}$ and any $\mathrm{n} \geq 2$.

The Golden Ratio
Actually, can prove a tighter bound than $\mathrm{O}\left(2^{\mathrm{n}}\right)$.

$\phi=(a+b) / b=b / a$
$\phi^{2}=\phi+1$
$\phi=\frac{1+\operatorname{sqrt}(5)}{2}$
$=1.618$...
ratio of sum of sides $(a+b)$

to longer side (b)
ratio of longer side (b) to shorter side (a)

Fibonacci Recurrence is $\mathrm{O}\left(\phi^{\mathrm{n}}\right)$

- Simplification: Ignore constant effort in recursive case.
$-T(0)=a$
$-T(1)=a$
$-T(n)=T(n-1)+T(n-2)$
- Want to show $T(n) \leq c \phi^{n}$ for all $n \geq 0$.
- have $\phi^{2}=\phi+1$
- multiplying by $\mathrm{c} \phi^{\mathrm{n}} \rightarrow \mathrm{c} \phi^{n+2}=c \phi^{n+1}+c \phi^{n}$
- Base:
- $T(0)=c=c \phi^{0}$ for $\mathrm{c}=\mathrm{a}$
$-\mathrm{T}(1)=\mathrm{c} \leq \mathrm{c} \phi^{1}$ for $\mathrm{c}=\mathrm{a}$
- Induction step:
$-T(n+2)=T(n+1)+T(n) \leq c \phi^{n+1}+c \phi^{n}=c \phi^{n+2}$

Can We Do Better?

Time Complexity:

- Number of times loop is executed? $n-1$
- Number of basic steps per loop? Constant
\rightarrow Complexity of iterative algorithm $=\mathrm{O}(n)$
Much, much, much, much, better than $\mathrm{O}\left(\phi^{\mathrm{n}}\right)$!

...But We Can Do Even Better!

- Denote with f_{n} the n-th Fibonacci number
$-f_{0}=0$
$-f_{1}=1$
$-f_{n+2}=f_{n+1}+f_{n}$
- Note that $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left(\begin{array}{c}f_{n} \\ f_{n+1}\end{array}\right]=\left[\begin{array}{l}f_{n+1} \\ f_{n+2}\end{array}\right]$, thus $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{n}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]=\left[\begin{array}{l}f_{n} \\ f_{n+1}\end{array}\right]$
- Can compute nth power of matrix by repeated squaring in $\mathrm{O}(\log n)$ time.
- Gives complexity O(log n)
- A little cleverness got us from exponential to logarithmic.

But We Are Not Done Yet...

- Would you believe constant time?

$$
\mathrm{f}_{\mathrm{n}}=\frac{\varphi^{\mathrm{n}}-\varphi^{, \mathrm{n}}}{\sqrt{5}}
$$

where $\varphi=\frac{1+\sqrt{5}}{2}$

$$
\varphi^{\prime}=\frac{1-\sqrt{5}}{2}
$$

Matrix Mult in Less Than $\mathrm{O}\left(\mathrm{n}^{3}\right)$

- Idea (Strassen's Algorithm): naive 2×2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left(\begin{array}{cc}
s_{1}+s_{2}-s_{4}+s_{6} & s_{4}+s_{5} \\
s_{6}+s_{7} & s_{2}-s_{3}+s_{5}-s_{7}
\end{array}\right)
$$

- where

$$
\begin{array}{ll}
-s_{1}=(b-d)(g+h) & s_{5}=a(f-h) \\
-s_{2}=(a+d)(e+h) & s_{6}=d(g-e) \\
-s_{3}=(a-c)(e+f) & s_{7}=e(c+d) \\
-s_{4}=h(a+b) &
\end{array}
$$

Now Apply This Recursively -

Divide and Conquer!

- Recurrence for the runtime of Strassen's Alg
$-M(n)=7 M(n / 2)+c n^{2}$
- Solution is $M(n)=O\left(n^{\log 7}\right)=O\left(n^{2.81}\right)$
- Number of additions
- Separate proof
- Number of additions is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Is That the Best You Can Do?

- How about 3×3 for a base case?
-best known is 23 multiplications
-not good enough to beat Strassen
- In 1978, Victor Pan discovered how to multiply 70×70 matrices with 143640 multiplications, giving O($\left.\mathrm{n}^{2.795 . . .}\right)$
- Best bound to date (obtained by entirely different methods) is $\mathrm{O}\left(\mathrm{n}^{2.376 . . .)}\right.$ (Coppersmith \& Winograd 1987)
- Best know lower bound is still $\Omega\left(n^{2}\right)$

Moral: Complexity Matters!

- But you are acquiring the best tools to deal with it!

