6/15/2011

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011
Thorsten Joachims

Lecture 23: Recurrences

Analysis of Merge-Sort

public static Comparable[] mergeSort(Comparable[] A, int low, int high) {

if (low < high) { //at least 2 elements? cost = ¢
int mid = (low + high)/2; cost = d
Comparable[] Al = mergeSort (A, low, mid); cost = T(n/2) + e
Comparable[] A2 = mergeSort(A, mid+l, high); cost = T(n/2) + £
return merge (Al,A2); cost =gn +h

}

.. cost = i

* Recurrence describing computation time:
—T(n)=c+d+e+f+2T(n/2)+gn+h & recurrence
—T(1)=i & base case

* How do we solve this recurrence?

Analysis of Merge-Sort

* Recurrence:
— T(n)=c+d+e+f+2T(n/2)+gn+h
- T(1) =i

First, simplify by dropping lower-order terms and replacing
constants by their max

— T(n)=2T(n/2)+an

— T(1)=b

* Simplify even more. Consider only the number of comparisons.
— T(n)=2T(n/2) +n
- T(1)=0

* How do we find the solution?

Solving Recurrences
* Unfortunately, solving recurrences is like

solving differential equations
— No general technique works for all recurrences

* Luckily, can get by with a few common
patterns

* You learn some more techniques in C52800

Analysis of Merge-Sort

* Recurrence for number of comparisons of MergeSort
— T(n)=2T(n/2) +n
- T(1)=0
- T(2)=2
* Toshow: T(n)is O(n log(n)) for n € {2,4,8,16,32,...}
— Restrict to powers of two to keep algebra simpler

¢ Proof: use inductionon n € {2,4,8,16,32,...}
— Show P(n) = {T(n) < c n log(n)} for some fixed constant c.
— Base: P(2)
* T(2)=2<c2log(2) using c=1
— Strong inductive hypothesis: P(m) = {T(m) < ¢ m log(m)} is true for all
m € {2,4,8,16,32,...k}
— Induction step: P(2) A P(4) A ... A P(k)> P(2k)
« T(2k) < 2T(2k/2) + (2K) < 2(c k log(K)) + (2K) < c (2k) log(k) + ¢ (2k)
=c (2K) (log(k) + 1) = c (2k) log(2k) for c > 1

Solving Recurrences

* Recurrences are important Master Method:

when using divide & conquer
to design an algorithm

Solution techniques:

— Can sometimes change
variables to get a simpler
recurrence

— Make a guess, then prove the
guess correct by induction

— Build a recursion tree and use it
to determine solution

— Can use the Master Method

* A‘“cookbook” scheme that

handles many common
recurrences

To solve T(n) =a T(n/b) + f(n)
compare f(n) with n'og?
* Solutionis T(n) = O(f(n))
if f(n) grows more rapidly
* Solution is T(n) = O(n'g:?)
if nlog,a grows more rapidly
* Solutionis T(n) = O(f(n) log n)
if both grow at same rate

Not an exact statement of the
theorem — f(n) must be “well-
behaved”

Recurrence Examples

Some common cases:

*T(N)=T(h—-1)+1 T(n)=0(n) Linear Search
*T(N)=T(n—1)+n T(n) = 0(n?) QuickSort worst-case
* T(n)=T(n/2)+1 T(n)=0O(logn) BinarySearch

* T(n)=T(n/2)+n T(n)=0(n)

* T(n)=2T(n/2)+n T(n) = O(n log n) MergeSort
*T(n)=2T(n-1) T(n)=0(2")

6/15/2011

10 50 100 300 1000

pal né n? nlogn 5n

n!

mn

« protons in the known universe ~ 126 digits
+ [sec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / psec ?

10 20 50 100 300

« The big bang was 15 billion years ago (5-10%7 secs)

- Source: D. Harel, Algorithmics

The Fibonacci Func

—

ion

* Mathematical definition:
— fib(0) =0
—fib(1) = 1
—fib(n) = fib(n - 1) + fib(n - 2), n>2

’
Fibonacci (Leonardo
Pisano) 11700112407
Statue in Pisa, Italy
Giovanni Paganucci

1863

¢ Fibonacci sequence: 0,1,1,2,3,5,8,13, ...

Recursive Execution

Execution of fib(4): fib(4)
/\
fib(3) fib(2)
N .

fib2) fib(1) fib(1) fib(0)

N

fib(1) fib(0)

The Fibonacci Recurrence

* Recurrence for computation time:
—T(0)=a
—-T(1)=a
—T(N)=T(h—-1)+T(n-2)+a

* What is computation time?

6/15/2011

Analysis of Recursive Fib

Recurrence for number of comparisons of MergeSort
- T(0)=a

- T(1)=a

— T(nN)=T(n-1)+T(n-2) +a
To show: T(n) is O(2")

Proof: use induction on n

— Show P(n) = {T(n) < c 2™} for some fixed constant c.

— Basis: P(0)
* T(0)=a<c20using c=a

— Basis: P(1)
* T(1)=as<c2'using c=a

— Strong inductive hypothesis: P(m) = {T(m) < c 2"} is true for all m < k.

— Induction step: P(0) A ... A P(k)=> P(k+1)
* T(k+1) <T(k)+T(k-1)+asc2"+c2™+a=c% 2™ +asc2™

foranyc>'iaandanyn22.

The Golden Ratio

Actually, can prove a tighter bound than O(2").
¢ = (a+b)/b = b/al

P?=p+1
_ 1+s0rt(5)
- 2

=1.618...

ratio of sum of sides (a+b)
to longer side (b)

a =

ratio of longer side (b) to
shorter side (a) 1

Fibonacci Recurrence is O(¢p")

Simplification: Ignore constant effort in recursive case.
- T(0)=a
- T(1)=a
— T(n)=T(n-1)+T(n-2)

Want to show T(n) < cén foralln> 0.
— havep?=¢p+1
— multiplying by cp” > cp™? = cp™! + cp”

Base:

— T(0)=c=cd’forc=a

— T(1)=cschplforc=a

Induction step:

— T(n+2) =T(n+1) + T(n) € cd™ + cp" = cp?

Can We Do Better?

Time Complexity:
— Number of times loop is executed?
— Number of basic steps per loop?
- Complexity of iterative algorithm = O(n)

Much, much, much, much, better than O(¢")!

...But We Can Do Even Better!

Denote with f, the n-th Fibonacci number
—f,=0

—f=1

- fn+2 = fn+1 + fn

0 1)) - [0 1) (1) _ [t
Note that|, ; [fnﬂ] = [fmz], thus[1 1] [fl] = [fnﬂ]
Can compute nth power of matrix by repeated
squaring in O(log n) time.
— Gives complexity O(log n)
— Alittle cleverness got us from exponential to logarithmic.

But We Are Not Done Yet...

* Would you believe constant time?

(pn — (P’n

fo = _
" 5

1+45 , 145
where ¢ = 2 = —

Matrix Mult in Less Than O(n3)

* Idea (Strassen's Algorithm): naive 2 x 2 matrix
multiplication takes 8 scalar multiplications, but
we candoitin 7:

a b)e f _ [sits2-satss Sy +Sg
c dflg h S+ S7 Sp-S3+S5-57

* where
~s,=(b-d)(g+h) ss=a(f-h)
—s,=(a+d)(e+h) se=d(g-e)
—s3=(a-c)(e+f) s;=e(c+d)
—s,=h(a+b)

6/15/2011

Now Apply This Recursively —
Divide and Conquer!

e Break 2™ x 2™1 matrices up into 4 2" x 2"
submatrices

* Multiply them the same way

A BY(E F) _ (5,+5,-5,+Ss S4+Ss
c pJle HJ ~ Sg+S7 Sz-S3+S5-S7

* where
S,=(B-D)(G+H) S, = A(F- H)
S,=(A+D)(E+H) S¢=D(G-E)
S,=(A-C)(E+F) S,=E(C+D)
S,=H(A+B)

Now Apply This Recursively —
Divide and Conquer!

Recurrence for the runtime of Strassen’s Alg
—M(n) =7 M(n/2) + cn?

— Solution is M(n) = O(nl°e7) = O(n281)

Number of additions

— Separate proof

— Number of additions is O(n?)

Is That the Best You Can Do?

* How about 3 x 3 for a base case?
—best known is 23 multiplications
—not good enough to beat Strassen

* In 1978, Victor Pan discovered how to multiply 70 x 70
matrices with 143640 multiplications, giving O(n2795-)

* Best bound to date (obtained by entirely different
methods) is O(n?376-) (Coppersmith & Winograd 1987)

* Best know lower bound is still Q(n?)

Moral: Complexity Matters!

* But you are acquiring the best tools to
deal with it!

