Induction

Lecture 22
Spring 2011

4/19/11

Goals for Today

* Be able to state the principle of induction
= |dentify its relationship to recursion
= State how it is different from recursion

* Be able to understand inductive proofs
= |dentify the reason why induction is necessary
= Follow most important steps of the proof

* Be able to construct simple inductive proofs
= More of this to come next lecture, discussion

Overview

* Recursion
= A programming/algorithm strategy

= Solves a problem by reducing it to simpler or
smaller instance(s) of the same problem

* Induction
= A mathematical proof technique
= Proves statements about natural numbers 0,1,2,...
= (or more generally, inductively defined objects)

* Closely related, but different

Merge Sort

How do we know
this is true?

e Je*
he ‘Comparable array x between lo * Merge 2 subarrays of x, using y as temp
X

— . . R

(inclusive) and hi (exclusive), recursively and orivate void merge(T[] x, int lo, int mid, int hi,
* |r.qﬂ log n]Jime -

D Or that thisis true? | Ty
inti = lo; // subarray pointers

*/ ti=lo; // sub t
private void mergeSort(T[] x, int lo, int hi, T(] y) { int j = mid;

// base case int k= lo; // destination pointer

if (hi <= lo + 1) return; // nothing to do while (i < mid &&] < hi)

ylk++] = (x[il.compareTo(x[j]) > 0)? x[j++] :
// at least 2 elements x[i++];
// split and recursively sort i
int mid = (lo + hi)/2;
mergeSort(x, lo, mid, y);
mergeSort(x, mid, hi, y);

// one of the subarrays is empty
// copy remaining elements from the other
System.arraycopy(x, i, y, k, mid - i);

// merge sorted sublists System.arraycopy(x, j, ¥, k, hi-j);

merge(x, o, mid, hi, y): // now copy everything back to original array
) System.arraycopy(y, lo, x, lo, hi - lo);

Merge Sort

Is this still true?

e /*
fre Comparable array x between o * Merge 2 subarrays of x, using y as temp

* (inclusive) and i (exclusive), recursively and

nrivate void merge(T[] x, int lo, it mid, int hi,

il og rime How about this? T

*/ int i = lo; // subarray pointers
private void mergeSort(T[] x, int lo, int hi, T[] y) { id;

// base case int k = lo; // destination pointer

if (hi <= lo + 1) return; // nothing to do

while (i < mid &&j < hi) {
ylk++] = (x[i].compareTo(x[j]) > 0)? x[j++] :
// at least 2 elements x[i++];
// split and recursively sort i
int mid = ik // one of the subarrays is empty
// copy remaining elements from the other
System.arraycopy(x, i, y, k, mid - i);
// merge sorted sublists System.arraycopy(x, j, ¥, k, hi-j);
merge(x, lo, mid, hi,y); // now copy everything back to original array
) System.arraycopy(y, 1o, x, lo, hi - lo);

mergeSort(x, lo, mid, y);
mergeSort(x, mid, hi, y);

Merge Sort

o
he Comparable array x between lo

* (inclusive) and hi (exclusive), recursively and .
*in(Qln log ndime Recursion:

*/ « The strategy you used to
private void mergeSort(T[] x, int lo, int hi, T[] y) { perform the sorting

// base case « Result is algorithm/program
if (hi <= o + 1) return; // nothing to do

Induction:

* How you show that the
the program actually sorts

« Also, how you show it has

mergeSort(x, mid, hi, y); O(n log n) performance

// merge sorted sublists * Result is a proof/argument

merge(x, lo, mid, hi, y); \
}

// at least 2 elements

// split and recursively sort
int mid = (lo + hi)/2;
mergeSort(x, lo, mid, y);

532014 Y3 SIPIND

Simpler Example: Sum of Integers
* We can describe a function in different ways
¢ S(n) = “the sum of the integers from 0 to n”

S(0) =0, ..., S(3) =0+1+2+3 =6, ...

* Iterative Definition
S(n)=0+1+..+n=3i

¢ Closed form characterization
Sc(n) = n(n+1)/2

* Are S(n) and Sc(n) the same function?

4/19/11

What are We Proving?

* Our claim must be a Examples
property of the natural
numbers

= is a statement with variable n
Write as P(n) + P(n): S(n) = Sc(n)
allows (numeric) values to be
substituted for n

¢ P(n): The number n is even

¢ P(n): Number n is even or odd

* P(n): M array

¢ P(n): MergeSort sorts any given array
P(0), P(1), P(2), ... of length n

* P(n): On any given array of length n,
MergeSort finishes in less than
c (nlog n) steps

* For each number n, P(n)
is either true or false

Are These Functions the Same?

¢ Are the same if same inputs give same outputs
* Property P(n): S(n) = S¢(n)

* Test some values and see if work
= 5(0)=0, S:(0)=0(1/2)=0 v
" 5(1)=0+1=1, S(1)=1(2/2)=1 v
= 5(2)=0+1+2=3, S{2)=2(3/2)=3 v/
= 5(3)=0+1+2+3=6, S.(3)=3(4/2)=6 v/
* This approach will never be complete, as
there are infinitely many n to check

Recursive Definition

¢ Let’s formulate S(n) in yet another way:

S(n)=[0+1+2+..+n-1+n
- =

this is S(n-1)

* This gives us a recursive definition:
" S¢(0)=0 < Base Case

" Spn)=Se(n-1) +n,n>0 «_ oo cive Case

* Example:
" S (4)=S.(3)+4=5,(2)+3+4
=Sp(1)+2+3+4=5,(0)+1+2+3+4
=0+1+2+3+4

An Intermediate Problem

* Are these functions the same?
= Recursive definition:
+54(0)=0
* Sz(n)=Sg(n-1)+n,n>0
= Closed form characterization:
* Sc(n) = n(n+1)/2

* Property P(n): Sg(n) = S¢(n)

Induction over Natural Numbers

Goal: Prove property P(n) holds for n > 0

1. Base Step:
= Show that P(0) is true Inductive Hypothesis

2. Inductive Step:
= [Assume P(k) trueffor an unspecified integer k

= Use assumption to show that P(k+1) is true

Conclusion: Because we could have picked any
k, we conclude P(n) holds for all integersn 20

Dominoes

« Assume equally spaced dominos, where spacing between
dominos is less than domino length.
* Want to argue that all dominoes fall:
= Domino 0 falls because we push it over

= Domino 0 hits domino 1, therefore domino 1 falls Repetitive argument.
= Domino 1 hits domino 2, therefore domino 2 falls Requires one sentence

= Domino 2 hits domino 3, therefore domino 3 falls per domino.

* What is a better way to make this argument?

4/19/11

A Better Argument

* Argument:
= (Base Step) Domino O falls because we push it over
= (Inductive Hypothesis) Assume domino k falls over

= (Inductive Step) Because domino k’s length is larger
than the spacing, it will knock over domino k+1

= (Conclusion) Because we could have picked any
domino to be the kth one, the dominoes will fall over

¢ This is an inductive argument
= Much more compact than example from last slide
= Works for an arbitrary number of dominoes!

Sp(n) = S¢(n) for all n?

Q‘,'

Property P(n): Sg(n) = S¢(n)

LI

¢ Base Step:
= Prove P(0) using the definition

Inductive Hypothesis (IH):
= Assume that P(k) holds for unspecified k
¢ Inductive Step:
= Prove that P(k+1) is true using IH and the definition

Proof (by Induction)

* Recall:

* S4(0)=0,S4(n) =S¢ (n-1)+n,n>0
+ Sc(n) =n(n+1)/2

Property P(n): Sg(n) = S¢(n)

Base Step: S¢(0) = 0 and S¢(0) = 0, both by definition
* Inductive Hypothesis: Assume Sg(k) = S¢(k)

¢ Inductive Step:

Splk+1) = Sg(k) + (k+1) Definition of Sg(k+1)
=Sc(k) + (k+1) Inductive Hypothesis
= k(k+1)/2 + (k+1) Definition of S¢(k)
= [k(k+1)+2(k+1)]/2 = (k+1)(k+2)/2 Algebra
=S¢(k+1) Definition of S¢(k+1)

* Conclusion: Sg(n) = S¢(n) for alln 20

Our Original Problem

¢ S(n) = “the sum of the integers from 0 to n”
S(0)=0, .., S(3) =0+1+2+3 =6, ...

Iterative Definition
S(n)=0+1+...+n=3,i

* Closed form characterization
Sc(n) = n(n+1)/2

* Property P(n): S(n) = S¢(n) <—— Did we show this?

Finishing the Proof

* Can just show that S(n) = Sg(n)
= For some, this is a convincing argument:
Sn)={o+1+2+...+n-1+n
- & -
this is S(n-1)
= Can also do another inductive proof
* Or could have worked it into our original proof
= Old P(n): S(n) = Sc(n) § .
Implies
= New P(n): S(n) = Sg(n) = S¢(n)
\f/

“Recursive Go-Between”

A Complete Argument

Recall:

S(n) =0+1+..+n
S4(0) =0, S¢(n) = Se(n-1) +n,n >0
5(0) = n(n+1)/2

Property P(n): S(n) = Sg(n) = S¢(n)
Base Step: S(0) = 0 and Sg(0) = 0 and S¢(0) = 0, all by definition
Inductive Hypothesis: Assume S(k) = Sg(k) = Sc(k)
Inductive Step: First prove S(k+1) = Sg(k+1)
S(k+1) =0+ 1+..+k +(k+1) Definition of S(k+1)

=5(k) + (k+1) Definition of S(k)
=Sp(k) + (k+1) Inductive Hypothesis
=Sp(k+1) Definition of Sy(k+1)

A Complete Argument

Recall:

©S(n) =0+1+..+n
4(0) =0, Sq(n) =S¢ (n-1) +n,n >0
5(0) = n(n+1)/2
Property P(n): S(n) = Sg(n) = Sc(n)
Inductive Step (Continued): Now prove Sg(k+1) = Sc(k+1)
Salk+1) = Sp(k) + (k+1) Definition of Sy(k+1)
=Sc(k) + (k+1) Inductive Hypothesis
= k(k+1)/2 + (k+1) Definition of S (k)
= [k(k+1)+2(k+1)]/2 = (k+1)(k+2)/2 Algebra
=Sc(k+1) Definition of Sc(k+1)
Conclusion: S(n) = Sg(n) = Sc(n) for alln >0

Induction Requires Recursion

Either a recursive algorithm is provided
= Induction used to prove property of algorithm
= Example: Correctness of MergeSort

Or you must construct a recursive algorithm

= May not be an actual program; could be a recursive
function, or abstract process

= Example: Our “recursive go-between” for S(n), Sc(n)
= Often call this the(“inductive” strategy
Remember

= Algorithm or strategy: recursion
= Proof argument: induction

Recursion to be used
in a proof only

Example With No (Initial) Recursion

* Claim: Can make any amount of postage above

8¢ with some combjnation of 3¢ and 5¢ stamps

* Property P(n): You can make n¢ of postage

from some combination of 3¢ and 5¢ stamps
Induction: Prove that it can be done

Recursion: A strategy that computes the
number of 3¢, 5¢ stamps needed

Strategy

Recu rsive

Given: n¢ of postage
Returns: amount of 3¢ and amount of 5¢ stamps

if (n==8) {
return one 3¢, one 5¢
Yelse {
Compute answer for (n-1)¢
Result is p 3¢ stamps, g 5¢ stamps
if (g >0) { // If there is a 5¢ stamp, replace with two 3¢ ones
return p+2 3¢ stamps, g-1 5¢ stamps
Yelse{ //If no5¢stamp, must be at least three 3¢ ones
return p-3 3¢ stamps, g+2 5¢ stamps
}

A Note on Base Step

Sometimes want to show a property is true for integers > b
Intuition:

= Knock over domino b, and dominoes in front get knocked over

= NotinterestedinO, 1, ..., (b-1)
In general, the base step in induction does not have to be 0
If base step is some integer b

= Induction proves the proposition for n = b, b+1, b+2, ...

= Does not say anything aboutn=0, 1, ..., b-1

Induction: Base Step

¢ Given: n¢ of postage

n=8 3: amount of 3¢ and amount of 5¢ stamps
Base Step: 3¢+5¢ = 8¢ e

if (n==8) {
return one 3¢, one 5¢
Yelse {
Compute answer for (n-1)¢
Result is p 3¢ stamps, g 5¢ stamps
if (g >0) { // If there is a 5¢ stamp, replace with two 3¢ ones
return p+2 3¢ stamps, g-1 5¢ stamps
Yelse{ //If no5¢stamp, must be at least three 3¢ ones
return p-3 3¢ stamps, g+2 5¢ stamps
}

4/19/11

Induction: Inductive Step

* Given: n¢ of postage
n = (k+1) : amount of 3¢ and amount of 5¢ stamps
x

if (n==8){
return one 3¢, one 5¢
Yelse {
Compute answer for (n-1)¢ Inductive Step:
Result is p 3¢ stamps, g 5¢ stamps | (3p+6)¢+(59-5)¢ = (3p)¢+(5q)¢+1¢
if (g >0){ // If there is a 5¢ stamp, i._, = (k+1)¢
return p+2 3¢ stamps, g-1 5¢ stamps
Yelse{ //If no5¢stamp, must be at least three 3¢ ones
return p-3 3¢ stamps, g+2 5¢ stamps
} Inductive Step:
} (3p-9)¢+(5g+10)¢ = (3p)¢+(5q)¢+1¢
= (k+1)¢

IH: (3p)¢+(5q)¢ = k¢

Cleaning it Up: Inductive Proof

* Claim: You can make any amount of postage above 8¢
with some combination of 3¢ and 5¢ stamps

¢ Base Step: It is true for 8¢, because 8 =3 +5
 Inductive Hypothesis: Suppose true for some k > 8
* Inductive Step:

= |f we used a 5¢ stamp to make k, we replace it by two 3¢
stamps. This gives k+1

= |f did not use a 5¢ stamp to make k, we must have used at least
three 3¢ stamps. Replace three 3¢ stamps by two 5¢ stamps.
This gives k+1.
* Conclusion: Any amount of postage above 8¢ can be
made with some combination of 3¢ and 5¢ stamps

Alternate/ gecursive Strategy

* Given: n¢ of postage
¢ Returns: amount of 3¢ and amount of 5¢ stamps

if (n==8){
return one 3¢, one 5¢ stamp
Yelseif (n==9) {
return three 3¢ stamps
}Yelse if (n ==10) {
return two 5¢ stamps
Yelse {
Compute answer for (n-3)¢
Result is p 3¢ stamps, g 5¢ stamps
return p+1 3¢ stamps, g 5¢ stamps

Strong Induction

* Weak induction

= P(0): Show that property P is true for 0

= P(k) =>P(k+1):

Show that if property P is true for k, it is true for k+1

= Conclude that P(n) holds for all n
¢ Strong induction
P(0), ..., P(m): Show property P is true for 0 to m
P(0) and P(1) and ... and P(k) => P(k+1):
Show that if P is true for numbers less than or equal to k,
then it is true for k+1

Conclude that P(n) holds for all n
* Both proof techniques are equally powerful

Strong Induction: Base Step

e Given: n¢ of postage
n=8,9,10 xamount of 3¢ and amount of 5¢ stamps

if (n == 8) { Base Step (part 1): 3¢+5¢ =8¢
return one 3¢, one 5¢ stamp
Yelseif (n==9) {
return three 3¢ stamps
}Yelse if (n ==10) {
return two 5¢ stamps
Yelse {
Compute answer for (n-3)¢
Result is p 3¢ stamps, g 5¢ stamps
return p+1 3¢ stamps, g 5¢ stamps

Base Step (part 2): 3¢+3¢+3¢ =9¢

Base Step (part 3): 5¢+5¢ = 10¢

Strong Induction: Inductive Step

* Given: n¢ of postage
n=k+l xamount of 3¢ and amount of 5¢ stamps

if (n==8) {
return one 3¢, one 5¢ stamp
Yelseif (n==9) {
return three 3¢ stamps
}Yelseif (n == 10) {
return two 5¢ stamps
Yelse {
Compute answer for (n-3)¢
Result is p 3¢ stamps, g 5¢ stamps
return p+1 3¢ stamps, g 5¢ stamps

Strong Induction Hypothesis:
Strategy works for any amount of
postage m, where 8 < m < k

SIH: (3p)¢+(5q)¢ = (k-2)¢

Inductive Step:
} (3p+3)¢+(5q)¢ = (k+1)¢

4/19/11

Clean Up: Strong Inductive Proof

* Claim: You can make any amount of postage above 8¢ with
some combination of 3¢ and 5¢ stamps
* Base Step: We consider three base cases: 8¢, 9¢, and 10¢
= |tis true for 8¢, since 3+5=8
= |tis true for 9¢, since 3+3+3 =9
= |tis true for 10¢, since 5+5 = 10
e (Strong) Inductive Hypothesis: Suppose there is some k
such that claim is true for all numbers m, where 8<m <k
* Inductive Step: As 8 < k-2 < k, make postage for (k-2)¢ and
add a 3¢ stamp. This gives answer for (k+1)¢.
* Conclusion: Any amount of postage above 8¢ can be made
with some combination of 3¢ and 5¢ stamps

Merge Sort: Correctness Idea
|

e
* Merge 2 subarrays of x, using y as temp
"

Property P(n):

For any array of length n as input, Any array of (T[] , int lo, int mid, int hi,

mergeSort() sorts the contents in plac lengthOor1 | TOY){
WCT= 10, 77 subarray pointers
private void mergeSort(T[] x, int lo, int hi, T[] y) { intj = mid;

// base case int k = lo; // destination pointer

if (hi <=lo + 1) return; // nothing to do —— i)

Base Step: areTo(x[j]) > 0)? x([j++] :
// atleast 2 elements Array of 1 or 0 elements is xi++];
// split and recursively sort already sorted

int mid = (lo + hi)/2;
mergeSort(x, lo, mid, y);
mergeSort(x, mid, hi, y);
// merge sorted sublists
merge(x, lo, mid, hi, y);

// one of the subarrays is empty
// copy remaining elements from the other
System.arraycopy(x, i, v, k, mid - i);
System.arraycopy(x,j, v, k, hi - J};

// now copy everything back to original array
System.arraycopy(y, lo, x, lo, hi - Io);

Merge Sort: Correctness Idea

} Show that merge() takes two

| [/

* Merge 2 subarrays of x, using y as temp
o

Property P(n):

For any array of length n as input, Any array of (T[] , int lo, int mid, int hi,

mergeSort() sorts the contents in plac lengthk+1 | TV {
WCT= 10, /77 subarray pointers
private void mergeSort(T[] x, int lo, int hi, T(] y) { int j = mid;

// base case intk = lo; // destination pointer

if (hi <= lo + 1) return; // nothing to do while (i< mid &8] < i) {
ylk++] = (x[il.compareTo(x[j]) > 0)? x[j++] :
// atleast 2 elements X[i++];
// split and recursively sort
int mid = (lo + hi)/2;
mergeSort(x, lo, mid, y);
mergeSort(x, mid, hi, y);
// merge sorted sublists
merge(x, lo, mid, hi, y);

1
Strong Inductive Hypothesis:
For any array of length m <k, /sempty

mergeSort() sorts the array th"fiz’";)fhe other

[T system.arraycopy(x, . v, k, hi-)
“ack to original array

Inductive Step: o, hi - o)

sorted halves and produces a
single sorted array of length k+1

Induction and Recursion
4 N

Recursion:

« A strategy used to solve a
problem or compute result

« Result is algorithm/program

Provides the \ / Guides the
“Inductive” Algorithm
Strategy \ Development
Induction:

* Prove statements about the
natural numbers

* Prove properties of recursive
algorithms

(Result is a proof/argument /

Summary of Today

* Induction is a technique to prove statements
= Recursion is a strategy to construct algorithms
= Useful for program correctness and complexity

* But all induction requires a recursive strategy
= Hard part is finding the strategy
= Afterwards, induction is often straightforward

= Different variations of induction exist to tailor to
your recursive strategy

To Think About for Next Time

I

* Sorts the Comparable array x between lo

* (inclusive) and i (exclusive), recursively and

*in O(n log n) time

*/

private void mergeSort(T(] x, int lo, int hi, T[] y) {
// base case
if (hi <= lo + 1) return; // nothing to do

// at least 2 elements

// split and recursively sort
intmid = lo+1; What does this
mergeSort(x, lo, mid, y);
mergeSort(x, mid, hi, y);
// merge sorted sublists
merge(x, lo, mid, hi, y);

to complexity?

e
* Merge 2 subarrays of x, using y as temp

private void merge(T[] , int lo, int mid, int hi,
ToyA{
inti=lo; // subarray pointers
int j = mid;
int k= lo; // destination pointer

while (i < mid &&j < hi) {
ylk++] = (x[il.compareTo(x[j]) > 0)? x[j++] :
Xi+];

¥

do

one of the subarrays is empty
?

copy remaining elements from the other
System.arraycopy(x, i, v, k, mid - i);
System.arraycopy(x,J, v, k, hi - J};

// now copy everything back to original array
System.arraycopy(y, lo, x, lo, hi - Io);

4/19/11

