
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 21: Threads
and Concurrency

Computer Processor Trends

– Moore’s Law: Computer speeds and memory
densities nearly double each year

– Multicore: use additional transistors to put more
CPUs (cores) on one chip.

2

Concurrency (aka Multitasking)

• Multiple processes

– Multiple independently
running programs

• Multiple threads

– Same program has multiple
streams of execution

• Special problems arise

– race conditions

– deadlock

3

What is a Thread?

• A separate process that can perform a
computational task independently and
concurrently with other threads

– Most programs have only one thread

– GUIs have a separate thread, the event
dispatching thread

– A program can have many threads

– You can create new threads in Java

4

What is a Thread?

• # Threads ≠ # Processors ≠ # Cores

– The processor cores distributes their time over all
the active threads

– Implemented with support from underlying
operating system or virtual machine

– Gives the illusion of many threads running
simultaneously, even if more threads than
processors / cores

5

Threads in Java

• Threads are instances of the class Thread
– can create as many as you like

• The Java Virtual Machine permits multiple concurrent
threads
– initially only one thread (executes main)

• Threads have a priority
– higher priority threads are executed preferentially
– a newly created Thread has initial priority equal to the

thread that created it (but can change)

6

6/15/2011

2

Creating a new Thread (Method 1)

7

class PrimeThread extends Thread {

long a, b;

PrimeThread(long a, long b) {

this.a = a; this.b = b;

}

public void run() {

//compute primes between a and b

...

}

}

PrimeThread p = new PrimeThread(143, 195);

p.start();

overrides
Thread.run()

can call run() directly –

the calling thread will run it

or, can call start()

– will run run() in new thread

Creating a new Thread (Method 2)

8

class PrimeRun implements Runnable {

long a, b;

PrimeRun(long a, long b) {

this.a = a; this.b = b;

}

public void run() {

//compute primes between a and b

...

}

}

PrimeRun p = new PrimeRun(143, 195);

new Thread(p).start();

Example

9

Thread[Thread-0,5,main] 0

Thread[main,5,main] 0

Thread[main,5,main] 1

Thread[main,5,main] 2

Thread[main,5,main] 3

Thread[main,5,main] 4

Thread[main,5,main] 5

Thread[main,5,main] 6

Thread[main,5,main] 7

Thread[main,5,main] 8

Thread[main,5,main] 9

Thread[Thread-0,5,main] 1

Thread[Thread-0,5,main] 2

Thread[Thread-0,5,main] 3

Thread[Thread-0,5,main] 4

Thread[Thread-0,5,main] 5

Thread[Thread-0,5,main] 6

Thread[Thread-0,5,main] 7

Thread[Thread-0,5,main] 8

Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {

new ThreadTest().start();

for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",

Thread.currentThread(), i);

}

}

public void run() {

for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",

Thread.currentThread(), i);

}

}

}

Example

10

Thread[main,5,main] 0

Thread[main,5,main] 1

Thread[main,5,main] 2

Thread[main,5,main] 3

Thread[main,5,main] 4

Thread[main,5,main] 5

Thread[main,5,main] 6

Thread[main,5,main] 7

Thread[main,5,main] 8

Thread[main,5,main] 9

Thread[Thread-0,4,main] 0

Thread[Thread-0,4,main] 1

Thread[Thread-0,4,main] 2

Thread[Thread-0,4,main] 3

Thread[Thread-0,4,main] 4

Thread[Thread-0,4,main] 5

Thread[Thread-0,4,main] 6

Thread[Thread-0,4,main] 7

Thread[Thread-0,4,main] 8

Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {

new ThreadTest().start();

for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",

Thread.currentThread(), i);

}

}

public void run() {

currentThread().setPriority(4);

for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",

Thread.currentThread(), i);

}

}

}

Example

11

Thread[main,5,main] 0

Thread[main,5,main] 1

Thread[main,5,main] 2

Thread[main,5,main] 3

Thread[main,5,main] 4

Thread[main,5,main] 5

Thread[Thread-0,6,main] 0

Thread[Thread-0,6,main] 1

Thread[Thread-0,6,main] 2

Thread[Thread-0,6,main] 3

Thread[Thread-0,6,main] 4

Thread[Thread-0,6,main] 5

Thread[Thread-0,6,main] 6

Thread[Thread-0,6,main] 7

Thread[Thread-0,6,main] 8

Thread[Thread-0,6,main] 9

Thread[main,5,main] 6

Thread[main,5,main] 7

Thread[main,5,main] 8

Thread[main,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {

new ThreadTest().start();

for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",

Thread.currentThread(), i);

}

}

public void run() {

currentThread().setPriority(6);

for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",

Thread.currentThread(), i);

}

}

}

Example

12

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

waiting...

running...

done

public class ThreadTest extends Thread {

static boolean ok = true;

public static void main(String[] args) {

new ThreadTest().start();

for (int i = 0; i < 10; i++) {

System.out.println("waiting...");

yield();

}

ok = false;

}

public void run() {

while (ok) {

System.out.println("running...");

yield();

}

System.out.println("done");

}

}

allows other waiting

threads to run

6/15/2011

3

Stopping Threads

• Threads normally terminate by returning from
their run method.

• stop(), interrupt(), suspend(), destroy(), etc. are
all deprecated

– can leave application in an inconsistent state

– inherently unsafe

– don't use them

– instead, set a variable telling the thread to stop itself

13

Daemon and Normal Threads

• A thread can be daemon or normal
– the initial thread (the one that runs main) is normal

• Daemon threads are used for minor or ephemeral tasks
(e.g. timers, sounds)

• A thread is initially a daemon if its creating thread is
– but this can be changed via setDemon(boolean on)

• The application halts when either
– System.exit(int) is called, or
– all normal (non-daemon) threads have terminated

14

Race Conditions

• A race condition can arise when two or more
threads try to access data simultaneously

• Thread B may try to read some data while thread
A is updating it
– updating may not be an atomic operation
– thread B may sneak in at the wrong time and read the

data in an inconsistent state

• Results can be unpredictable!

15

Example – A Lucky Scenario

• Suppose threads A and B want to call
doSomething(),and there is one element on the stack
1. thread A tests stack.isEmpty() ⇒ false

2. thread A pops ⇒ stack is now empty

3. thread B tests stack.isEmpty() ⇒ true

4. thread B just returns – nothing to do

16

private Stack<String> stack = new Stack<String>();

public void doSomething() {

if (stack.isEmpty()) return;

String s = stack.pop();

//do something with s...

}

Example – An Unlucky Scenario

• Suppose threads A and B want to call doSomething(),
and there is one element on the stack
1. thread A tests stack.isEmpty() ⇒ false

2. thread B tests stack.isEmpty() ⇒ false

3. thread A pops ⇒ stack is now empty

4. thread B pops ⇒ Exception!

17

private Stack<String> stack = new Stack<String>();

public void doSomething() {

if (stack.isEmpty()) return;

String s = stack.pop();

//do something with s...

}

Solution: Locking

• A thread can “lock” an object for exclusive access
– Only one thread can “hold” a lock at a time
– If several request the same lock, Java somehow

decides which will get it

• The lock is released when the thread leaves the
synchronization block
– synchronized(someObject) { protected code }
– The protected code has a

mutual exclusion guarantee:
At most one thread can be in it

• When released, some other
thread can acquire the lock

18

6/15/2011

4

Locking in Java

• Put critical operations in a synchronized block

• The stack object acts as a lock

• Only one thread can own the lock at a time

19

private Stack<String> stack = new Stack<String>();

public void doSomething() {

synchronized (stack) {

if (stack.isEmpty()) return;

String s = stack.pop();

}

//do something with s...

}
synchronized block

Solution – Locking

20

public void doSomething() {

synchronized (this) {

...

}

}

public synchronized void doSomething() {

...

}

•You can lock on any object, including this

is equivalent to

Locks are Associated with Objects

• Every Object has its own built-in lock

– Just the same, some applications prefer to create
special classes of objects to use just for locking

– This is a stylistic decision and you should agree on
it with your teammates or learn the company
policy if you work at a company

• Code is “thread safe” if it can handle multiple
threads using it… otherwise it is “unsafe”

21

File Locking

• In file systems, if two or more processes could
access a file simultaneously, this could result
in data corruption

• A process must open a file to use it – gives
exclusive access until it is closed

• This is called file locking – enforced by the
operating system

• Same concept as synchronized(obj) in Java

22

Deadlock

• The downside of locking – deadlock

• A deadlock occurs when two or more
competing threads are waiting for the other to
relinquish a lock, so neither ever does

• Example:
– thread A tries to lock object X, then object Y

– thread B tries to lock object Y, then object X

– A gets X, B gets Y

– Each is waiting for the other forever

23

Visualizing Deadlock

24

Thread

A

Thread

B
X

Y

A has a lock on X

wants a lock on Y

B has a lock on Y

wants a lock on X

• Some Strategies for Avoiding Deadlocks

– If possible, do not acquire more than one lock.

– If possible, always lock objects in the same order.

6/15/2011

5

wait/notify

• A mechanism for event-driven activation of
threads
– For example, animation threads and the GUI event-

dispatching thread in can interact via wait/notify

• How does it work?
– A thread that has a lock on an object can call wait() to

go to sleep and give up lock.
– Other thread gets the lock, executes some code, and

then calls notify()/notifyAll() to wake other thread
• notify(): wakes up one of the sleeping threads for this object

(roughly according to priority and sleep time)
• notifyAll(): wakes up all sleeping thread in order (roughly)

25

wait/notify

26

boolean isRunning = true;

public synchronized void run() {

while (true) {

while (isRunning) {

//do one step of simulation

}

try {

wait();

} catch (InterruptedException ie) {}

isRunning = true;

}

}

public void stopAnimation() {

animator.isRunning = false;

}

public void restartAnimation() {

synchronized(animator) {

animator.notify();

}

}

relinquishes lock on animator –

awaits notification

notifies processes waiting
for animator lock

animator:

A producer/consumer example

• Thread A produces loaves of bread and puts
them on a shelf with capacity K

– For example, maybe K=10

• Thread B consumes the loaves by taking them
off the shelf

– Thread A doesn’t want to overload the shelf

– Thread B doesn’t wait to leave with empty arms

27

producer shelves consumer

Producer/Consumer example

28

class Bakery {

int nLoaves = 0; // Current number of waiting loaves

final int K = 10; // Shelf capacity

public synchronized void produce() {

while(nLoaves == K) this.wait(); // Wait until not full

++nLoaves;

this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {

while(nLoaves == 0) this.wait(); // Wait until not empty

--nLoaves;

this.notifyall(); // Signal: shelf not full

}

}

Things to notice

• Wait needs to wait on the same Object that you
used for synchronizing (in our example, “this”,
which is this instance of the Bakery)

• Notify wakes up just one waiting thread, notifyall
wakes all of them up

• We used a while loop because we can’t predict
exactly which thread will wake up “next”

29

Summary

– Use of multiple processes and multiple threads within
each process can exploit concurrency
• Which may be real (multicore) or “virtual” (an illusion)

– But when using threads, beware!
• Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions
• Yet synchronization also creates risk of deadlocks
• Even with proper locking concurrent programs can have

other problems such as “livelock”

– Serious treatment of concurrency is a complex topic
(covered in more detail in cs3410 and cs4410)
• CS 3420, looks at why the hardware has this issue but not

from the perspective of writing concurrent code

39

http://images.google.com/imgres?imgurl=http://calorielab.com/news/wp-images/post-images/french-bakery-breads-and-pastries.jpg&imgrefurl=http://calorielab.com/news/2008/03/30/smart-choices-at-french-bakeries-and-pastry-shops/&usg=__rzNSfTbZRibDb_4JlZp5Oy6Oqew=&h=359&w=468&sz=110&hl=en&start=13&um=1&tbnid=GkHvFuCiJdMxJM:&tbnh=98&tbnw=128&prev=/images?q=bakery&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&sa=N&um=1
http://images.google.com/imgres?imgurl=http://www.ciaprochef.com/fbi/images/podcasts/breadBaker/Bread-&-Baker.jpg&imgrefurl=http://www.ciaprochef.com/fbi/podcasts/BreadAndBaker.html&usg=__rHQQ6ht33xKj1FmfeOgLHA5NK4Y=&h=340&w=300&sz=22&hl=en&start=1&um=1&tbnid=AiboYT8upHBwGM:&tbnh=119&tbnw=105&prev=/images?q=baker&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1
http://shakunharris.files.wordpress.com/2008/12/j0403213.jpg

