Minimum Spanning Trees

- Example Problem:
- Nodes = neighborhoods
- Edges = possible cable routes
- Goal: Find lowest cost network that connects all neighborhoods
- Analogously:

- Router network
- Clustering
- Component in many approximation algorithms

Undirected Trees

- An undirected graph is a tree if there is exactly one (simple) path between any pair of vertices

Properties of trees
$-|E|=|V|-1$

- Connected
- no cycles
- In fact, any two of these properties imply the third, and

Facts About Trees imply that the
 graph is a tree

Spanning Trees

- A spanning tree of a connected undirected graph (V, E) is a subgraph $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree
- Same set of vertices V
$-E^{\prime} \subseteq E$
$-\left(V, E^{\prime}\right)$ is a tree

Finding a Spanning Tree

- A subtractive method
- Start with the whole graph - it is connected
- Find a cycle (how?), pick an edge on the cycle and throw it out \rightarrow the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

- A subtractive method
- Start with the whole graph - it is connected
- Find a cycle (how?), pick an edge on the cycle and throw it out \rightarrow the graph is still connected (why?)
- Repeat until no more cycles

- An additive method
- Start with no edges -
there are no cycles
- Find connected components (how?).
- If more than one connected component, insert an edge between them
\rightarrow still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

- An additive method
- Start with no edges -
there are no cycles
- Find connected
components (how?).
- If more than one connected component, insert an edge between them
\rightarrow still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

- A subtractive method
- Start with the whole graph - it is connected
- Find a cycle (how?), pick an edge on the cycle and throw it out \rightarrow the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

- An additive method
- Start with no edges there are no cycles
- Find connected components (how?).
- If more than one connected component, insert an edge between them
\rightarrow still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

- An additive method
- Start with no edges there are no cycles
- Find connected components (how?).
- If more than one connected component, insert an edge between them
\rightarrow still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

- An additive method
- Start with no edges there are no cycles
- Find connected components (how?).
- If more than one connected component, insert an edge between them \rightarrow still no cycles (why?)
- Repeat until only one component

Finding a Spanning Tree

- An additive method
- Start with no edges there are no cycles
- Find connected components (how?).
- If more than one connected component insert an edge between them \rightarrow still no cycles (why?)
- Repeat until only one component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm A: Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

- Algorithm B: Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

- Algorithm B: Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

- Algorithm B: Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

- Algorithm B: Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

- Algorithm B: Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

- Algorithm B: Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

- All 3 greedy algorithms give the same minimum spanning tree (assuming distinct edge weights)

Similar Code Structures

- BFS (unweighted)
-best: next in queue -update: $\mathrm{D}[\mathrm{w}]=\mathrm{D}[\mathrm{v}]+1$
- BFS (weighted) \rightarrow Dijkstra
-best: next in PQ
-update: $\mathrm{D}[\mathrm{w}]=\min \{\mathrm{D}[\mathrm{w}], \mathrm{D}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w})\}$
- Prim
-best: next in PQ
-update: $\mathrm{D}[\mathrm{w}]=\min \{\mathrm{D}[\mathrm{w}], \mathrm{c}(\mathrm{v}, \mathrm{w})\}$

Network Flow

- How many "units" can flow from s to t?
- Flow in water network
- Traffic flow

\rightarrow Ford-Fulkerson Algorithm

Minimum Cut

- Cut graph so that Source and Sink are separated, and the sum of the edges that are cut is minimized.
- Traffic bottlenecks
- Clustering in social networks

\rightarrow Duality with Maximum Flow

Traveling Salesperson

- Find a path of minimum distance that visits every city.
- Planning and logistics
- Microchip design

- NP-Hard \rightarrow there is probably no $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ algorithms

