

Some Graph Terminology

- Vertices u and v are called the source and sink of the directed edge (u, v), respectively
- Vertices u and v are called the endpoints of (u, v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

Graph Definitions

- A directed graph (or digraph) is a pair (V, E) where
-V is a set
- E is a set of ordered pairs (u, v) where u, v in V
- Usually require $u \neq v$ (i.e., no self-loops)
- An element of V is called a vertex (pl . vertices) or node
- An element of E is called an edge or arc
- $|V|=$ size of V, often denoted n
- $|E|=$ size of E, often denoted m

- A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that $\left(v_{i}, v_{i+1}\right)$ in $\mathrm{E}, 0 \leq \mathrm{i} \leq \mathrm{p}-1$
- The length of a path is its number of edges - In this example, the length is 5
- A path is simple if it does not repeat any vertices
- A cycle is a path $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ such that $v_{0}=v_{p}$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a dag

Shortest Paths in Graphs

- Finding the shortest (min-cost) path in a graph is a problem that occurs often
-Best flight from Ithaca, NY to Duesseldorf, Germany?
-How closely are two people connected on Facebook?
-Driving directions from Ithaca, NY to Queens, NY?
-Result depends on our notion of cost
- Number of hops
- Least mileage
- Least time
- Cheapest
- Least boring
-All of these "costs" can be represented as edge weights
- How do we find a shortest path?

Breadth-First Search for Shortest Paths
 Unweighted Graphs

- Input: start node s, destination node t
- Put start s node into queue and mark s as visited.
- While queue not empty
- Poll n off queue.
- FOR all (unmarked) successors n^{\prime} of n
- IF n' equals t THEN return path
- Put n' into queue
- Mark n' as visited.
- Time complexity:
- O(m) time

Why does BFS find Shortest Path?

- Any node in distance 1 is visited before any node at 2 hops, before any node at distance 3 hops, ..
- Whenever a node is at the top of the queue for the first time, we must have gotten there with the minimum number of hops.
- How do we keep track of the path that got BFS there?
- Store predecessor node on path for each node in graph.

Breadth-First Search for Shortest Paths

Weighted Graphs

- Input: start node s, destination node t
- Put start ($s, 0, n u l l$) into min-priority queue.
- While queue not empty
- Poll minimum element ($n, c, p r e v$) off queue and mark n as visited.
- IF n equals t THEN return path
- FOR all (unmarked) successors n^{\prime} of n
- Put ($n^{\prime}, c+$ weight $\left(n, n^{\prime}\right), n$) into priority queue
- Time complexity:
$-\mathrm{O}(\mathrm{m} \log \mathrm{m})$ time using heap and adjacency lists
- Can be improved \rightarrow Dijkstra's Algorithm

