
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 19:
Shortest Paths

Graph Definitions

• A directed graph (or digraph) is a pair (V, E) where
– V is a set

– E is a set of ordered pairs (u,v) where u,v in V
• Usually require u ≠ v (i.e., no self-loops)

• An element of V is called a vertex (pl. vertices) or
node

• An element of E is called an edge or arc

• |V| = size of V, often denoted n

• |E| = size of E, often denoted m

2

b

a

c
d

e

f

Some Graph Terminology

• Vertices u and v are called the source and sink of
the directed edge (u,v), respectively

• Vertices u and v are called the endpoints of (u,v)

• Two vertices are adjacent if they are connected by
an edge

• The outdegree of a vertex u in a directed graph is
the number of edges for which u is the source

• The indegree of a vertex v in a directed graph is the
number of edges for which v is the sink

• The degree of a vertex u in an undirected graph is
the number of edges of which u is an endpoint

3

More Graph Terminology

• A path is a sequence v0,v1,v2,...,vp of vertices such that
(vi,vi+1) in E, 0 ≤ i ≤ p – 1

• The length of a path is its number of edges
– In this example, the length is 5

• A path is simple if it does not repeat any vertices
• A cycle is a path v0,v1,v2,...,vp such that v0 = vp

• A cycle is simple if it does not repeat any vertices
except the first and last

• A graph is acyclic if it has no cycles
• A directed acyclic graph is called a dag

4

v0

v5

b

a

c
d

e

f

1

2

3

4 2 3

2 4

3

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Graphs

Adjacency List Adjacency Matrix

1 2

34

1

2

3

4 2|0.1 3|3.1

2|2.4 4|1.5

3|0.9

0 2.4 0 1.5

0 0 0.9 0

0 0 0 0

0 0.1 3.1 0

1 2 3 4

1

2

3

4

Weighted Graphs

Adjacency List Adjacency Matrix

1 2

34

2.4

0.11.5

3.1

0.9

6/15/2011

2

Shortest Paths in Graphs

• Finding the shortest (min-cost) path in a graph is a problem
that occurs often
–Best flight from Ithaca, NY to Duesseldorf, Germany?

–How closely are two people connected on Facebook?

–Driving directions from Ithaca, NY to Queens, NY?

–Result depends on our notion of cost

• Number of hops

• Least mileage

• Least time

• Cheapest

• Least boring

–All of these “costs” can be represented as edge weights

• How do we find a shortest path?

Breadth-First Search for Shortest Paths
Unweighted Graphs

• Input: start node s, destination node t

• Put start s node into queue and mark s as visited.

• While queue not empty
– Poll n off queue.

– FOR all (unmarked) successors n’ of n
• IF n’ equals t THEN return path

• Put n’ into queue

• Mark n’ as visited.

• Time complexity:
– O(m) time

8

Why does BFS find Shortest Path?

• Any node in distance 1 is visited before any node
at 2 hops, before any node at distance 3 hops, …

• Whenever a node is at the top of the queue for
the first time, we must have gotten there with
the minimum number of hops.

• How do we keep track of the path that got BFS
there?

– Store predecessor node on path for each node in
graph.

Breadth-First Search for Shortest Paths
Weighted Graphs

• Input: start node s, destination node t
• Put start (s,0,null) into min-priority queue.
• While queue not empty

– Poll minimum element (n,c,prev) off queue and mark
n as visited.

– IF n equals t THEN return path
– FOR all (unmarked) successors n’ of n

• Put (n’,c+weight(n,n’),n) into priority queue

• Time complexity:
– O(m log m) time using heap and adjacency lists
– Can be improved  Dijkstra’s Algorithm

10

