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CS/ENGRD 2110
Object-Oriented Programming 

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 17: Heaps and 
Priority Queues

Stacks and Queues as Lists

• Stack (LIFO) implemented as list

– insert (i.e. push) to, extract (i.e. pop) from front of 
list

• Queue (FIFO) implemented as list

– insert (i.e. add) on back of list, extract (i.e. poll)
from front of list

• All operations are O(1)
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Priority Queue

• ADT Definition 
– data items are Comparable

– lesser elements (as determined by 
compareTo()) have higher priority

– extract() returns the element with the 
highest priority 
• i.e. least in the compareTo() ordering

– break ties arbitrarily
• alternatively could break ties FIFO, but lets keep it 

simple

Priority Queue Examples

• Scheduling jobs to run on a computer
– default priority = arrival time

– priority can be changed by operator

• Scheduling events to be processed by an event handler
– priority = time of occurrence

• Airline check-in
– first class, business class, coach

– FIFO within each class

java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)

void clear() {...} //remove all elements

E peek() {...} //return min element without removing

//(null if empty)

E poll() {...} //remove min element (extract)

//(null if empty)

int size() {...}

Priority Queues as Lists

• Maintain as unordered list (i.e. queue)
– insert() puts new element at front – O(1)
– extract() must search the list – O(n)

• Maintain as ordered list
– insert() must search the list – O(n)
– extract() gets element at front – O(1)

• In either case, O(n2) to process n elements

• Can we do better?
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Important Special Case

• Fixed (and small) number of p priority levels

– Queue within each level

– Example: airline check-in

• insert() – insert in appropriate queue – O(1)

• extract() – must find a nonempty queue – O(p)

Heaps

• A heap is a concrete data structure that can be 
used to implement priority queues

• Gives better complexity than either ordered or 
unordered list implementation:
– insert(): O(log n)

– extract(): O(log n)

O(n log n) to process n elements

NOTE: Do not confuse with heap memory, where the Java virtual machine 
allocates space for objects – different usage of the word heap

Heap Invariant

• Binary tree with data at each node

• Satisfies the Heap Order Invariant:

The least (highest priority) 

element of any subtree is found 

at the root of that subtree.
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Least element in any subtree

is always found at the root

of that subtree

But it is possible to have

smaller elements deeper

in the tree!

Examples of Heaps

• Ages of people in family tree

– parent is always older than children, but you can 
have an uncle who is younger than you

• Salaries of employees of a company

– bosses generally make more than subordinates, 
but a VP in one subdivision may make less than a 
Project Supervisor in a different subdivision

Balanced Heaps

• Two restrictions:

– Any node of depth < d – 1 has exactly 2 children, 
where d is the height of the tree

• implies that any two maximal paths (path from a root 
to a leaf) are of length d or d – 1, and the tree has at 
least 2d nodes

– All maximal paths of length d are to the left of 
those of length d – 1
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d = 3
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A Balanced Heap Store in an ArrayList

• Elements of the heap are stored in the array in 
order, going across each level from left to 
right, top to bottom

• The children of the node at array index n are 
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

0

1 2

3 4 5 6

7 8 9 10 11

children of node n are found at 2n + 1 and 2n + 2
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Store in an ArrayList insert()

• Put the new element at the end of the array

• If this violates heap order because it is smaller 
than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful 
place

 The heap invariant is maintained!
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insert() Example
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Analysis of insert()

• Time is O(log n), since the tree is balanced

– At most log(d) swaps up the tree before invariant is 
restored

– size of tree is exponential as a function of depth d 
 depth of tree is logarithmic as a function of size n

– Each insertion is finished after at most d <= log(n) 
swaps

extract()

• Remove the least element – it is at the root

• This leaves a hole at the root – fill it in with 
the last element of the array

• If this violates heap order because the root 
element is too big, swap it down with the 
smaller of its children

• Continue swapping it down until it finds its 
rightful place

 The heap invariant is maintained!
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Analysis of extract()

• Time is O(log n), since the tree is balanced

– At most log(d) swaps down towards the leaves of 
the tree before invariant is restored

– size of tree is exponential as a function of depth d 
 depth of tree is logarithmic as a function of size n

– Each extraction is finished after at most d <= log(n) 
swaps

HeapSort

• Given a Comparable[] array of length n

• Put all n elements into a heap – O(n log n) 

• Repeatedly get the min and sequentially put 
into new array – O(n log n)


