Stacks and Queues as Lists CS/ENGRD 2110 **Object-Oriented Programming** and Data Structures list Spring 2011 Thorsten Joachims from front of list Lecture 17: Heaps and Priority Queues first • • 55 • 120 • 19 • last .____

• Stack (LIFO) implemented as list - insert (i.e. push) to, extract (i.e. pop) from front of

- Queue (FIFO) implemented as list - insert (i.e. add) on back of list, extract (i.e. poll)
- All operations are O(1)

Priority Queue

- ADT Definition
 - data items are Comparable
 - lesser elements (as determined by compareTo()) have higher priority
 - extract() returns the element with the highest priority
 - i.e. least in the compareTo () ordering
 - break ties arbitrarily
 - alternatively could break ties FIFO, but lets keep it simple

Priority Queue Examples

↓ 16

- Scheduling jobs to run on a computer
 - default priority = arrival time
 - priority can be changed by operator
- Scheduling events to be processed by an event handler priority = time of occurrence
- Airline check-in
 - first class, business class, coach
 - FIFO within each class

java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert) void clear() {...} //remove all elements E peek() {...} //return min element without removing //(null if empty) E poll() {...} //remove min element (extract) //(null if empty) int size() {...}

Priority Queues as Lists

- Maintain as unordered list (i.e. queue) - insert() puts new element at front - O(1)
 - extract() must search the list O(n)
- Maintain as ordered list - insert() must search the list - O(n) - extract() gets element at front - O(1)
- In either case, O(n²) to process n elements
- Can we do better?

Important Special Case

- Fixed (and small) number of p priority levels
 - Queue within each level
 - Example: airline check-in
- insert() insert in appropriate queue O(1)
- extract() must find a nonempty queue O(p)

Heaps

- A *heap* is a concrete data structure that can be used to implement priority queues
- Gives better complexity than either ordered or unordered list implementation:
 - insert(): O(log n)
 - extract(): O(log n)
 - \rightarrow O(n log n) to process n elements

NOTE: Do not confuse with heap memory, where the Java virtual machine allocates space for objects – different usage of the word heap

Heap Invariant

- Binary tree with data at each node
- Satisfies the Heap Order Invariant:

The least (highest priority) element of any subtree is found at the root of that subtree.

Examples of Heaps

- · Ages of people in family tree
 - parent is always older than children, but you can have an uncle who is younger than you
- · Salaries of employees of a company
 - bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision

Balanced Heaps

- Two restrictions:
 - Any node of depth < d 1 has exactly 2 children, where d is the height of the tree
 - implies that any two maximal paths (path from a root to a leaf) are of length d or d – 1, and the tree has at least 2d nodes
 - All maximal paths of length d are to the left of those of length d 1

• Time is O(log n), since the tree is balanced

- At most log(d) swaps up the tree before invariant is restored
- size of tree is exponential as a function of depth d
 ⇔ depth of tree is logarithmic as a function of size n
- Each insertion is finished after at most d <= log(n) swaps

extract()

- Remove the least element it is at the root
- This leaves a hole at the root fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- \rightarrow The heap invariant is maintained!

Analysis of extract()

- Time is O(log n), since the tree is balanced
 - At most log(d) swaps down towards the leaves of the tree before invariant is restored
 - size of tree is exponential as a function of depth d
 ⇔ depth of tree is logarithmic as a function of size n
 - Each extraction is finished after at most d <= log(n) swaps

HeapSort

- Given a Comparable[] array of length n
- Put all n elements into a heap O(n log n)
- Repeatedly get the min and sequentially put into new array – O(n log n)