
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 17: Heaps and
Priority Queues

Stacks and Queues as Lists

• Stack (LIFO) implemented as list

– insert (i.e. push) to, extract (i.e. pop) from front of
list

• Queue (FIFO) implemented as list

– insert (i.e. add) on back of list, extract (i.e. poll)
from front of list

• All operations are O(1)
55 120 19 16first

last

Priority Queue

• ADT Definition
– data items are Comparable

– lesser elements (as determined by
compareTo()) have higher priority

– extract() returns the element with the
highest priority
• i.e. least in the compareTo() ordering

– break ties arbitrarily
• alternatively could break ties FIFO, but lets keep it

simple

Priority Queue Examples

• Scheduling jobs to run on a computer
– default priority = arrival time

– priority can be changed by operator

• Scheduling events to be processed by an event handler
– priority = time of occurrence

• Airline check-in
– first class, business class, coach

– FIFO within each class

java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)

void clear() {...} //remove all elements

E peek() {...} //return min element without removing

//(null if empty)

E poll() {...} //remove min element (extract)

//(null if empty)

int size() {...}

Priority Queues as Lists

• Maintain as unordered list (i.e. queue)
– insert() puts new element at front – O(1)
– extract() must search the list – O(n)

• Maintain as ordered list
– insert() must search the list – O(n)
– extract() gets element at front – O(1)

• In either case, O(n2) to process n elements

• Can we do better?

6/15/2011

2

Important Special Case

• Fixed (and small) number of p priority levels

– Queue within each level

– Example: airline check-in

• insert() – insert in appropriate queue – O(1)

• extract() – must find a nonempty queue – O(p)

Heaps

• A heap is a concrete data structure that can be
used to implement priority queues

• Gives better complexity than either ordered or
unordered list implementation:
– insert(): O(log n)

– extract(): O(log n)

O(n log n) to process n elements

NOTE: Do not confuse with heap memory, where the Java virtual machine
allocates space for objects – different usage of the word heap

Heap Invariant

• Binary tree with data at each node

• Satisfies the Heap Order Invariant:

The least (highest priority)

element of any subtree is found

at the root of that subtree.

4

146

21 198 35

22 5538 10 20

Least element in any subtree

is always found at the root

of that subtree

But it is possible to have

smaller elements deeper

in the tree!

Examples of Heaps

• Ages of people in family tree

– parent is always older than children, but you can
have an uncle who is younger than you

• Salaries of employees of a company

– bosses generally make more than subordinates,
but a VP in one subdivision may make less than a
Project Supervisor in a different subdivision

Balanced Heaps

• Two restrictions:

– Any node of depth < d – 1 has exactly 2 children,
where d is the height of the tree

• implies that any two maximal paths (path from a root
to a leaf) are of length d or d – 1, and the tree has at
least 2d nodes

– All maximal paths of length d are to the left of
those of length d – 1

6/15/2011

3

d = 3

4

146

21 198 35

22 5538 10 20

A Balanced Heap Store in an ArrayList

• Elements of the heap are stored in the array in
order, going across each level from left to
right, top to bottom

• The children of the node at array index n are
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

0

1 2

3 4 5 6

7 8 9 10 11

children of node n are found at 2n + 1 and 2n + 2

4

146

21 198 35

22 5538 10 20

Store in an ArrayList insert()

• Put the new element at the end of the array

• If this violates heap order because it is smaller
than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful
place

 The heap invariant is maintained!

4

146

21 198 35

22 5538 10 20

insert() Example

4

146

21 198 35

22 5538 10 20 5

insert() Example

6/15/2011

4

4

146

21

19

8 35

22 5538 10 20

5

insert() Example

4

14

6

21

19

8 35

22 5538 10 20

5

insert() Example

4

14

6

21

19

8 35

22 5538 10 20

5

insert() Example

4

14

6

21

19

8 35

22 5538 10 20

5

2

insert() Example

4

14

6

21

19

8

3522 5538 10 20

5

2

insert() Example

4

14

6

21

19

8

3522 5538 10 20

2

5

insert() Example

6/15/2011

5

2

14

6

21

19

8

3522 5538 10 20

4

5

insert() Example

2

14

6

21

19

8

3522 5538 10 20

4

5

insert() Example

Analysis of insert()

• Time is O(log n), since the tree is balanced

– At most log(d) swaps up the tree before invariant is
restored

– size of tree is exponential as a function of depth d
 depth of tree is logarithmic as a function of size n

– Each insertion is finished after at most d <= log(n)
swaps

extract()

• Remove the least element – it is at the root

• This leaves a hole at the root – fill it in with
the last element of the array

• If this violates heap order because the root
element is too big, swap it down with the
smaller of its children

• Continue swapping it down until it finds its
rightful place

 The heap invariant is maintained!

4

56

21 148 35

22 5538 10 20 19

extract() Example

56

21 148 35

22 5538 10 20 19

4

extract() Example

6/15/2011

6

56

21 148 35

22 5538 10 20 19

4

extract() Example

56

21 148 35

22 5538 10 20

194

extract() Example

5

6

21 148 35

22 5538 10 20

19

4

extract() Example

5

6

21

14

8 35

22 5538 10 20

19

4

extract() Example

5

6

21

14

8 35

22 5538 10 20

4

19

extract() Example

6

21

14

8 35

22 5538 10 20

4 5

19

extract() Example

6/15/2011

7

6

21

14

8 35

22 5538 10 20

19

4 5

extract() Example

6

21

14

8 35

22 5538 10

20

19

4 5

extract() Example

6

21

14

8 35

22 5538 10

20

19

4 5

extract() Example

6

21

148

35

22 5538 10

20 19

4 5

extract() Example

6

21

148

35

22 5538

10

20

19

4 5

extract() Example

6

21

148

35

22 5538

10 19

20

4 5

extract() Example

6/15/2011

8

Analysis of extract()

• Time is O(log n), since the tree is balanced

– At most log(d) swaps down towards the leaves of
the tree before invariant is restored

– size of tree is exponential as a function of depth d
 depth of tree is logarithmic as a function of size n

– Each extraction is finished after at most d <= log(n)
swaps

HeapSort

• Given a Comparable[] array of length n

• Put all n elements into a heap – O(n log n)

• Repeatedly get the min and sequentially put
into new array – O(n log n)

