6/15/2011

CS/ENGRD 2110
Object-Oriented Programming

_and Data Structures
Spring 2011
Thorsten Joachims

Lecture 14: Graphical
User Interfaces
(Dynamic)

GUI Statics and GUI Dynamics

Statics: * Dynamics:
what’s drawn on the screen user interactions
— Components — Events

« E.g. buttons, labels, lists, * E.g. button-press, mouse-
sliders, menus, ... click, key-press, ...

— Containers — Listeners
* components that contain * an object that responds to
other components an event
« E.g.frames, panels, dialog — Helper classes
boxes, ...

* E.g. Graphics, Color, Font,
— Layout managers FontMetrics, Dimension, ...
« control placement and sizing

of components

Dynamics Overview

* Dynamics = causing and responding to actions
— What actions?

« Called events: mouse clicks, mouse motion, dragging,
keystrokes

* We would like to write code (a handler) that is invoked when
an event occurs so that the program can respond
appropriately

* InJava, you can intercept events by providing an object that
“hears” the event — a listener

What objects do we need to know about?
— Events

— Event listeners

Brief Example Revisited

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton('Push Mel');
private JLabel = JLabel ("Count: " + count) ;

public Intro()
tDefaultCloseOperatlon(EXIT ON_CLOSE) ;
LEFT)); //set layout manager

new
add (myButton) ; //add compcnents
add (label) ;

label.setPreferredSize (new Dimension (60, 10));

myButton. addActionList (new List 0
public void actionbertotned (AetionEvent & 1
countt+;
label.setText ("Count: " + count);

}
h:

pack () ;
setVisible (true) ;

}

public static void main(String[] args) {
new Intro()
}
}

The Java Event Model

¢ Timeline
— User or program does something to a component
« clicks on a button, resizes a window, ...
— Java issues an event object describing the event
— A special type of object (a listener) “hears” the event
* The listener has a method that “handles” the event
* The handler does whatever the programmer programmed
* What you need to understand
— Events: How components issue events
— Listeners: How to make an object that listens for events

— Handlers: How to write a method that responds to an
event

Events
An Event is a Java object * Event types:
Events are normally created ActionEvent
by the Java runtime system - AdJ“Stme“tEve“t
— You can create your own, but - Compor?entEvent
this is unusual — ContainerEvent
Normally events are _ if:?iz:;;vent
associated with a _ InputEvent
component — InputMethodEvent
Most events are in — InvocationEvent
java.awt.event and — ItemEvent
javax.swing.event — KeyEvent
— MouseEvent
All events are subclasses of _ MouseWheelEvent
AWTEvent — PaintEvent
— TextEvent
— WindowEvent

6/15/2011

Types of Events

Each Swing Component can generate one or
more types of events

— The type of event depends on the component
* Clicking a JButton creates an ActionEvent
* Clicking a JCheckbox creates an ItemEvent
— The different kinds of events include different
information about what has occurred
* All events have method getSource () which returns the
object (e.g., the button or checkbox) on which the Event
initially occurred
* An ItemEvent has a method getStateChange () that
returns an integer indicating whether the item (e.g., the
checkbox) was selected or deselected

Event Listeners

*ActionListener, MouselListener,
WindowListener, ...

sListeners are Java interfaces
—Any class that implements that interface can be used
as a listener
*To be a listener, a class must implement the
interface

—E.g. an ActionListener must contain a method
public void actionPerformed (ActionEvent e)

Implementing Listeners

* Which class should be a listener?

— Java has no restrictions on this, so any class that
implements the listener will work

Typical choices:
— Top-level container that contains whole GUI
public class GUI implements ActionListener

— Inner classes to create specific listeners for reuse

private class LabelMaker implements ActionListener

— Anonymous classes created on the spot

b.addActionListener (new ActionListener() {...});

Listeners and Listener Methods

* When you implement an interface, you
must implement all the interface’s methods

— Interface ActionListener has one method:
* void actionPerformed(ActionEvent e)

— Interface MouseListener has five methods:
+ void mouseClicked (MouseEvent e)
* void mouseEntered (MouseEvent e)
* void mouseExited (MouseEvent e)
* void mousePressed (MouseEvent e)
+ void mouseReleased (MouseEvent e)

— Interface MouseMotionListener has two methods:
+ void mouseDragged (MouseEvent e)
+ void mouseMoved (MouseEvent e)

Registering Listeners

How does a component know which listener to use?
You must register the listeners
— This connects listener objects with their source objects

— Syntax:
component.add???Listener (Listener)

— You can register as many listeners as you like
Example:

b.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label.setText (generateLabel()) ;

Example 1:
The Frame is the Listener

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExamplel extends JFrame implements ActionListener {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
public static void main(String[] args) {
JFrame £ = new ListenerExamplel();
£.setDefaultCloseOperation (JFrame . EXIT ON_CLOSE) ;
£.setSize (200,100) ;
£.setVisible (true) ;
}
public ListenerExamplel() {
tL t (new FlowL t (FlowL t.LEFT)) ;
add (b) ; add(label);
b.addActionListener (this) ;

}

public void actionPerformed(ActionEvent e) {
count++;
label.setText ("Count: " + count);

6/15/2011

Example 2:
The Listener is an Inner Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample2 extends JFrame {
private int count;
private JButton b = new JButton("Push Me
private JLabel label = new JLabel ("Count:
class Helper implements ActionListener {
public void actionPerformed(ActionEvent e) {
count++;

+ count) ;

label.setText ("Count: " + count);

}

}

public static void main(String[] args) {
JFrame £ = new ListenerExample2();
£.setDefaultCloseOperation (JFrame . EXIT ON_CLOSE) ;
£.setSize (200,100); £.setVisible(true);

}

public ListenerExample2() {

L t (new FlowLayout (FlowL t. LEFT)) ;

add(b) ; add(label);
b.addActionListener (new Helper());

Example 3: The Listener
is an Anonymous Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample3 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel ("Count: " + count);
public static void main (String[] args) {
JFrame £ = new ListenerExample3();
£.setDefaultCloseOperation (JFrame .EXIT_ON_CLOSE) ;
£.setSize(200,100) ; f.setVisible(true);
}
public ListenerExample3() {
tL t (new FlowLayout (FlowL t.LEFT)) ;
add (b) ; add(label);

b.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
count++;
label.setText ("Count: " + count);

Adapters

* Some listeners (e.g., MouseListener) have lots of
methods; you don’t always need all of them
— For instance, you may be interested only in mouse clicks
* For this situation, Java provides “adapters”
— An adapter is a predefined class that implements all the
methods of the corresponding Listener
* Example: MouseAdapter is a class that implements all the
methods of interfaces MouseListener and
MouseMotionListener
— The adapter methods do nothing
— To easily create your own listener, you extend the adapter
class, overriding just the methods that you actually need

Using Adapters

import javax.swing.*; import javax.swing.event.*;
import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame {
private int count; private JButton b = new JButton("Mouse Me!");
private JLabel label = new JLabel ("Count: " + count);
class Helper extends MouseAdapter {
public void mouseEntered (MouseEvent e) {
countt+;
label.setText ("Count: " + count);
}
}
public static void main(String[] args) {
JFrame £ = new AdapterExample () ;
f.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
£.setSize (200,100); £.setVisible(true);
}
public AdapterExample() {
L t (new FlowLayout (FlowL t.LEFT)) ;
add (b) ; add(label);
b.addMouseListener (new Helper());

Notes on Events and Listeners

* Asingle component can have many listeners

* Multiple components can share the same listener

— Can use event.getSource () to |dent|fy the
component that generated the event

* For more information on designing listeners, see
http://download.oracle.com avase/tutor|a|/u|swm
events

* For more information on designing GUIs, see
http://download.oracle.com/favase/tutorial/uiswin

GUI Drawing and Painting

* For a drawing area, extend JPanel and override

the method

public void paintComponent (Graphics g)

— paintComponent contains the code to completely
draw everything in your drawing panel

— Do not call paintComponent directly — instead,
request that the system redraw the panel at the next
convenient opportunity by calling panel . repaint ()

— repaint () requests a call paintComponent ()
“soon” (i.e. within milliseconds)

http://download.oracle.com/javase/tutorial/uiswing/events/
http://download.oracle.com/javase/tutorial/uiswing/events/
http://download.oracle.com/javase/tutorial/uiswing/
http://download.oracle.com/javase/tutorial/uiswing/

Java Graphics

* The Graphics class has methods for colors,
fonts, and various shapes and lines

— setColor (Color c)
— drawOval (int x, int y, int width, int height)
— f£illOval(int x, int y, int width, int height)
— drawline (int x1, int yl, int x2, int y2)
— drawString(String str, int x, int y)

* Take a look at

— java.awt.Graphics (for basic graphics)

— java.awt.Graphics2D (for more sophisticated control)

— The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/

— examples on the web site

6/15/2011

http://java.sun.com/docs/books/tutorial/2d/index.html

