CS/ENGRD 2110
Object-Oriented Programming
and Data Structures

Spring 2011
Thorsten Joachims

Lecture 14: Graphical
User Interfaces
(Static)

Interactive Programs

 “Classic” view of
computer programs:
transform inputs to
outputs, stop

Event-driven programs:
interactive, long-running

~ Servers interact with clients
— Applications interact with user(s)

input

input
events

GUI Motivation

* Interacting with a Program
— Program-Driven = Proactive
* Statements execute in sequential, predetermined order

« Typically use keyboard or file /O, but program determines when that
happens

* Usually single-threaded

— Event-Driven = Reactive
* Program waits for user input to activate certain statements
* Typically uses a GUI (Graphical User Interface)
* Often multi-threaded

* Design...Which to pick?

— Program called by another program?

— Program used at command line?

— Program interacts often with user?

— Program used in window environment?

Java Support for Building GUls

* Java Foundation Classes
— Classes for building GUIs
— Major components
* awt and swing
Pluggable look-and-feel
support
Accessibility APl
Java 2D API
Drag-and-drop Support

.

.

.

Internationalization

* Our main focus: Swing
— Building blocks of GUIs
— Windows & components
— User interactions
* Built upon the AWT
(Abstract Window
Toolkit)
— Java event model

Java Foundation Classes
*Pluggable Look-and-Feel Support

— Controls look-and-feel for particular wi ing environment
— E.g., Java, Windows, Mac

* Accessibility API
— Supports assistive technologies such as screen readers and Braille

*Java 2D

— Drawing
— Includesrectangles, lines, circles, images, ...

*Drag-and-drop
— Support for drag and drop between Java application and a native application

*Internationalization
— Support for other languages

GUI Statics and GUI Dynamics

* Statics:
what’s drawn on the screen
— Components
* E.g. buttons, labels, lists,
sliders, menus, ...
— Containers

+ components that contain
other components
* E.g.frames, panels, dialog
boxes, ...
— Layout managers

« control placement and sizing
of components

* Dynamics:
user interactions
— Events
* E.g. button-press, mouse-
click, key-press, ...
— Listeners

* an object that responds to
an event

— Helper classes

* E.g. Graphics, Color, Font,
FontMetrics, Dimension, ...

6/15/2011

Creating a Window

import javax.swing.*;

public class Basicl {

public static void main(String[] args) {
//create the window
JFrame £ = new JFrame ("Basic Test!");
//quit Java after closing the window
£.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
£.setSize (200, 200); //set size in pixels
f.setVisible(true); //show the window

| o Basic Tstt

Creating a Window Using a
Constructor

import javax.swing.*;
public class Basic2 extends JFrame {

public static void main(String[] args) {
new Basic2();

}

public Basic2() {
setTitle("Basic Test2!"); //set the title
//quit Java after closing the window
setDefaultCloseOperation (EXIT ON_CLOSE) ;
setSize (200, 200); //set size in pixels
setVisible (true); //show the window

A More Extensive Example

import javax.swing.*:
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton("Push Me!");
private Jlabel label = new JLabel("Count: " + count);

public Intro() {
setDefaultCloseOperation (EXIT_ON_CLOSE) ;
new F1 LEFT)); //set layout manager

add (myButton) ; //add components
add(label);

Butt tener (new Act. tener() {
public void actionPerformed (ActionEvent e) (
nt+t;

label .setText ("Count: " + count);

pack() ;
setvisible (true) ;

)

public static void main(String[] args) (
try {

UIMa 1 . N
} catch (Exception exc) {}
new Intro();

GUI Statics

* Determine which components you want

* Choose a top-level container in which to put the
components (JFrame is often a good choice)

* Choose a layout manager to determine how
components are arranged

* Place the components

Components = What You See

* Visual part of an interface

* Represents something with position and
size

* Can be painted on screen and can receive
events

* Buttons, labels, lists, sliders, menus, ...

Component Examples

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame {

public ComponentExamples() {
(new FlowLayout (FlowLayout.LEFT)) ;

add (new JButton ("Button")) ;
add (new JLabel ("Label")) ;

add (new JComboBox (new String[] { "A", "B", "C" }));
add (new JCheckBox ("JCheckBox")) ;

add (new JSlider (0, 100));

add (new JColorChooser()) ;

setDefaul (M%)
pack() ; e Lsalna
setVisibl|

}

public stati

l':lw—n..w:

6/15/2011

More Components

* JFileChooser: allows choosing a file
* JLabel: a simple text label

* JTextArea: editable text

* JTextField: editable text (one line)

* JScrollBar: a scrollbar

* JPopupMenu: a pop-up menu

* JProgressBar: a progress bar

* Lots more!

Containers

A container is a component Three basic top-level containers:
that *+ JWindow:
— Can hold other components — top-level window with no
— Has a layout manager border
* JFrame:

Heavyweight vs. lightweight — top-level window with border
— Aheavyweight component) and (optional) menu bar

interacts directly with the host * JDialog:

system

— used for dialog windows
— JWindow, JFrame, and JDialog
are heavyweight

— Except for these top-level * Another important container
containers, Swing components — JPanel: used mostly to organize
are almost all lightweight objects within other containers

« JPanel is lightweight

A Component Tree

JFrame
P | | (] Converter < E
e
[z Ndometers =
—
‘ ‘ U.S. System
JPanel JPanel [2,000 e -
JPanel JPanel JPanel JPanel
L %boBox (mi)
omboBox (km)
i TextField (3226) JTextField (2000)
Jslider Jslider

Layout Managers

Alayout manager controls placement and sizing of components in a
container

— If you do not specify a layout manager, the container will use a default:
« JPanel default = FlowLayout
« JFrame default = BorderLayout
Five common layout managers:
— BorderLayout, BoxLayout, FlowLayout, GridBagLayout, GridLayout
General syntax
— container.setLayout (new LayoutMan());
Examples:
— JPanel pl = new JPanel (new BorderLayout());
— JPanel p2 = new JPanel();
— p2.setlayout (new BorderLayout());

Some Example Layout Managers

¢ FlowLayout « Borderlayout

— Components placed from left to — Divides window into five areas:
rightin order added North, South, East, West, Center

— When arow is filled, a new row is
started * Adding components

— Lines can be centered, left-justified g P N
or right-justified (see FlowLayout — Flowlayoutand GridLayout use
constructor) container.add(component)

— See also BoxLayout — BorderLayout uses

container.add(component, index)
where index is one of
BorderLayout.NORTH

* GridLayout

— Components are placed in grid * Borderlayout.SOUTH
pattern + Borderlayout.EAST
— number of rows & columns * Borderlayout WEST
+ Borderlayout.CENTER

specified in constructor
— Gridis filled left-to-right, then top-
to-bottom

FlowLayout Example

import javax.swing.*;
import java.awt.*; | Seaticst

|

Bution1 || @utton? | Buton3 || Bwtend | Butions
public class Staticsl {

public static void main| fmms || @me; | pusess
new S1GUI() ;
}
}

class S1GUI {
private JFrame f;

public S1GUI() {
£ = new JFrame("Staticsl");
£.setDefaultCloseOperation (JFrame. EXIT ON_CLOSE) ;
£.setSize (500, 200);
£.setLayout (new FlowLayout (FlowLayout.LEFT)) ;
for (int b = 1; b < 9; bt+)

£.add (new JButton("Button " + b)) ;

£.setVisible (true);

6/15/2011

import Javax swing v
import java.awt.

public class Statics2
public

class ColorsdiPansl extends Jranel (
Colo: ;

}

class S2GUI extends JFrame {
P 10 {

Coloredspanel (Color color) {

public void paintComponent (Graphics @) {

}

BorderLayout Example

| statica

static void main(String[] args) { new S

olor = colos

s setColor (color
{fillRect(0, 0, 400, 400);

ublic S2GU.
setTitle ("Statics2t);
otDefaul tCloseCperation (JFrame. EXII_ON_CL)

Setsize(d
adTaen ‘Coloredsbanel (Color .RED) , BorderLayout.NORT)
add (new ColoredJPanel (Color.GREEN) , BD!derLayout SourH) ;
add(new ColoredJPanel (Color.BLUE) , BorderlLayout.WEST) ;
2d(new ColoredTpanel (Color. YELLOM . BorderLayout EAST)
loredJPanel (Color.BLACK) , BorderLayout.CENTER) ;
setVisible(true) ;

GridLayout Example

import Javax swing ¥
import java.awt.

public class Statics3 (
public static void main(String[] args) { new S3GUI(

class S3GUT extends Jrrame (
static final in
SUAtic final int S178 =13
static final int GAP = 1;

public S3GUL() (
etrshe (‘Besticas”) ;
Setbefaul tCloseoperation (EXIT ON CLO5E) ;
setlayout (new GriaLayout (DI, ~D: AP)) ;
; LP0%; "1 Caad (new Myl

pack() ;
setvisible (true) ;
}

class MyPanel extends JPanel ([
MyPanel() (
(new (s12E, s1zE));)

public void paintComponent (Graphics g) (
float gradi
T T Eloat) Matn 3B3(geEX() - geLx()))/ (loat) ((SIZE + GAP) + DI ;
g.setColor (new Color (0f, Of, gradie
S eI Rect (0o 0 Cgetnsatn() | Setdesoht()

More Layout Managers

* CardLayout ¢ Custom
— Tabbed index card look — Can define your own layout
from Windows manager

— But best to try Java's layout
managers first...

* GridBagLayout
— Most versatile, but

AWT and Swing

AWT
— Initial GUI toolkit for Java
— Provided a “Java” look and feel
— Basic API: java.awt.*

* Swing

— More recent (since Java 1.2) GUI toolkit

complicated * null — Added functionality (new components)
— No layout manager — Supports look and feel for various platforms (Windows, Mac)
— Programmer must specify — Basic API: javax.swing.*
absolute locations
— Provides great control, but . . . 5
can be dangerous because Did SW'”$ replaced AWT?
of platform dependency — Not quite: both use the AWT event model
Code Examples
* Intro.java ¢ ComponentExamples.java
— Button & counter — Sample components
¢ Basicl.java « Staticsl.java
— Create a window — FlowLayout example
* Basic2.java ¢ Statics2.java
— Create a window using a — BorderLayout example
constructor « Statics3.java

Calculator.java — GridLayout example
— Shows use of JOptionPane LayoutDemo.java
to produce standard -
dialogs — Multiple layouts

