
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 13: Designing,
Coding,

and Documenting

Designing and Writing a Program

• Don't sit down at the terminal immediately
and start hacking

• Design stage – THINK first
– about the data you are working with

– about the operations you will perform on it

– about data structures you will use to represent it

– about how to structure all the parts of your program so as to achieve
abstraction and encapsulation

• Coding stage – code in small bits
– test as you go

– understand preconditions and postconditions

– insert sanity checks (assert statements in Java are good)

– worry about corner cases

• Use Java API to advantage
2

The Design-Code-Debug Cycle
• Design is faster than debugging (and more fun)

– extra time spent designing reduces coding and
debugging

• Which is better?

• Actually, should be more like this:

3

design code debug

design code debug

Divide and Conquer!

• Break program into manageable parts that can
be implemented, tested in isolation

• Define interfaces for parts to talk to each
other – develop contracts (preconditions,
postconditions)

• Make sure contracts are obeyed
– Clients use interfaces correctly

– Implementers implement interfaces correctly
(test!)

• Key: good interface documentation
4

Pair Programming

• Work in pairs
• Pilot/copilot

– pilot codes, copilot watches and makes
suggestions

– pilot must convince copilot that code works
– take turns

• Or: work independently on different
parts after deciding on an interface
– frequent design review
– each programmer must convince the other
– reduces debugging time

• Test everything
5

Documentation is Code

• Comments (esp. specifications) are as important as the
code itself
– determine successful use of code
– determine whether code can be maintained
– creation/maintenance = 1/10

• Documentation belongs in code or as close as possible
– Code evolves, documentation drifts away
– Put specs in comments next to code when possible
– Separate documentation? Code should link to it.

• Avoid useless comments
– x = x + 1; //add one to x -- Yuck!
– Need to document algorithm? Write a paragraph at the

top.
– Or break method into smaller, clearer pieces.

6

6/15/2011

2

Javadoc

• An important Java documentation tool

• Extracts documentation from classes, interfaces
– Requires properly formatted comments

• Produces browsable, hyperlinked HTML web
pages

7

Java source code

(many files)

Linked HTML

web pages

javadoc

8

How Javadoc is Produced
/**

* Constructs an empty <tt>HashMap</tt> with the specified initial

* capacity and the default load factor (0.75).

*

* @param initialCapacity the initial capacity.

* @throws IllegalArgumentException if the initial capacity is negative.

*/

public HashMap(int initialCapacity) {

this(initialCapacity, DEFAULT_LOAD_FACTOR);

}

/**

* Constructs an empty <tt>HashMap</tt> with the default initial capacity

* (16) and the default load factor (0.75).

*/

public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR;

threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);

table = new Entry[DEFAULT_INITIAL_CAPACITY];

init();

}

9

indicates Javadoc comment

Javadoc keywords

can include HTML

Some Useful Javadoc Tags
• @return description

– Use to describe the return value of the method, if any
– E.g., @return the sum of the two
intervals

• @param parameter-name description
– Describes the parameters of the method
– E.g., @param i the other interval

• @author name
• @deprecated reason
• @see package.class#member

• {@code expression}
– Puts expression in code font

10

Developing and Documenting
an ADT

• Write an overview – purpose of the ADT

• Decide on a set of supported operations

• Write a specification for each operation

11

1. Writing an ADT Overview
• Example abstraction: a closed interval

[a,b] on the real number line
– *a,b+ = , x | a ≤ x ≤ y -

• Example overview:

12

/**

* An Interval represents a closed interval [a,b]

* on the real number line.

*/ Abstract

description of

the ADT’s

values

Javadoc

comment

6/15/2011

3

2. Identify the Operations

• Enough operations for needed tasks

• Avoid unnecessary operations – keep it
simple!

– Don’t include operations that client (without
access to internals of class) can implement

13

3. Writing Method Specifications

• Include
– Signature: types of method arguments, return type
– Description of what the method does (abstractly)

• Good description (definitional)
– /** Add two intervals. The sum of two intervals is

– * a set of values containing all possible sums of

– * two values, one from each of the two intervals.

– */

– public Interval plus(Interval i);

• Bad description (operational)
– /** Return a new Interval with lower bound a+i.a,

– * upper bound b+i.b.

– */

– public Interval plus(Interval i);

14

Not abstract,

might as well

read the code…

3. Writing Specifications (cont’d)

• Attach before methods of class or interface

15

/** Add two intervals. The sum of two intervals is

* a set of values containing all possible sums of

* two values, one from each of the two intervals.

*

* @param i the other interval

* @return the sum of the two intervals

*/

Method

overview

Method

description

Additional

tagged

clauses

Know Your Audience

• Code and specs have a target audience
– the programmers who will maintain and use it

• Code and specs should be written
– with enough documented detail so they can

understand it
– while avoiding spelling out the obvious

• Try it out on the audience when possible
– design reviews before coding
– code reviews

16

Consistency

• Pick a consistent coding style, stick with it
– Don’t make understanding your code harder than

necessary

• Teams should set common style

• Match style when editing someone else’s code
– Not just syntax, also design style

17

Simplicity

• The present letter is a very long one, simply because I
had no time to make it shorter. – Blaise Pascal

• Be brief. – Strunk & White

• Applies to programming… simple code is
– Easier and quicker to understand (at least it often is)
– More likely to be correct

• Good code is simple, short, and clear
– Save complex algorithms, data structures for where they

are needed
– Always reread code (and writing) to see if it can be made

shorter, simpler, clearer

18

6/15/2011

4

Choosing Names

• Don’t try to document with variable names
– Longer is not necessarily better

– int searchForElement(
int[] array_of_elements_to_search,
int element_to_look_for);

– int search(int[] a, int x);

• Names should be short but suggestive
• Local variable names should be short

19

Avoid Copy-and-Paste

• Biggest single source of program errors
–Bug fixes never reach all the copies

–Think twice before using your editor’s copy-and-
paste function

• Abstract instead of copying!
–Write many calls to a single function rather than

copying the same block of code around

20

^V

Design vs Programming by Example

• Programming by example:
– copy code that does something like what you want
– hack it until it works

• Problems:
– inherit bugs in code
– don't understand code fully
– usually inherit unwanted functionality
– code is a bolted-together hodge-podge

• Alternative: design
– understand exactly why your code works
– reuse abstractions, not code templates

21

Avoid Premature Optimization

• Temptations to avoid
– Copying code to avoid overhead of abstraction

mechanisms
– Using more complex algorithms & data structures

unnecessarily
– Violating abstraction barriers

• Result:
– Less simple and clear
– Performance gains often negligible

• Avoid trying to accelerate performance until
– You have the program designed and working
– You know that simplicity needs to be sacrificed
– You know where simplicity needs to be sacrificed

22

Avoid Duplication

• Duplication in source code creates an implicit constraint to
maintain, a quick path to failure
– Duplicating code fragments (by copying)
– Duplicating specs in classes and in interfaces
– Duplicating specifications in code and in external documents
– Duplicating same information on many web pages

• Solutions:
– Named abstractions (e.g., declaring functions)
– Indirection (linking pointers)
– Generate duplicate information from source (e.g., Javadoc!)

• If you must duplicate:
– Make duplicates link to each other so can find all clones

23

Maintain State in One Place

• Often state is duplicated for efficiency

• But difficult to maintain consistency

• Atomicity is the issue

– if the system crashes while in the middle of an
update, it may be left in an inconsistent state

– difficult to recover

24

6/15/2011

5

Error Handling

• It is usually an afterthought — it shouldn’t be

• User errors vs program errors — there is a
difference, and they should be handled
differently

• Insert lots of ‘‘sanity checks’’ — the Java assert
statement is good way to do this

• Avoid meaningless messages

25

Avoid Meaningless Messages

26

Design Patterns

• Introduced in 1994 by Gamma, Helm,
Johnson, Vlissides (the “Gang of Four”)

• Identified 23 classic software design patterns
in OO programming

• More than 1/2 million copies sold in 14
languages

27

Design Patterns

• Abstract Factory groups object factories that have a common theme.
• Builder constructs complex objects by separating construction and representation.
• Factory Method creates objects without specifying the exact class to create.
• Prototype creates objects by cloning an existing object.
• Singleton restricts object creation for a class to only one instance.
• Adapter allows classes with incompatible interfaces to work together by wrapping

its own interface around that of an already existing class.
• Bridge decouples an abstraction from its implementation so that the two can vary

independently.
• Composite composes one-or-more similar objects so that they can be manipulated

as one object.
• Decorator dynamically adds/overrides behavior in an existing method of an object.
• Facade provides a simplified interface to a large body of code.
• Flyweight reduces the cost of creating and manipulating a large number of similar

objects.
• Proxy provides a placeholder for another object to control access, reduce cost, and

reduce complexity.

28

Design Patterns

• Chain of responsibility delegates commands to a chain of processing objects.
• Command creates objects which encapsulate actions and parameters.
• Interpreter implements a specialized language.
• Iterator accesses the elements of an object sequentially without exposing its

underlying representation.
• Mediator allows loose coupling between classes by being the only class that has

detailed knowledge of their methods.
• Memento provides the ability to restore an object to its previous state (undo).
• Observer is a publish/subscribe pattern that allows a number of observer objects

to see an event.
• State allows an object to alter its behavior when its internal state changes.
• Strategy allows one of a family of algorithms to be selected on-the-fly at runtime.
• Template method defines the skeleton of an algorithm as an abstract class,

allowing its subclasses to provide concrete behavior.
• Visitor separates an algorithm from an object structure by moving the hierarchy of

methods into one object.

29

Observer Pattern

• Observable

– changes from time to time

– is aware of Observers, other entities that want to be
informed when it changes

– but may not know (or care) what or how many
Observers there are

• Observer

– interested in the Observable

– want to be informed when the Observable changes

30

6/15/2011

6

Observer Pattern

• Issues
– does the Observable push information, or does the

Observer pull it? (e.g., email vs rss reader)
– whose responsibility is it to check for changes?
– publish/subscribe paradigm

31

Observable

Observers

Observer Pattern

32

public interface Observer<E> {

void update(E event);

}

public class Observable<E> {

private Set<Observer<E>> observers = new HashSet<Observer<E>>();

boolean changed;

void addObserver(Observer<E> obs) {

observers.add(obs);

}

void removeObserver(Observer<E> obs) {

observers.remove(obs);

}

void notifyObservers(E event) {

if (!changed) return;

changed = false;

for (Observer<E> obs : observers) {

obs.update(event);

}

}

}

Visitor Pattern

• A data structure provides a generic way to iterate over
the structure and do something at each element

• The visitor is an implementation of interface methods
that are called at each element

• The visited data structure doesn’t know (or care) what
the visitor is doing

• There could be many visitors, all doing different things

33

Visitor Pattern

34

public interface Visitor<T> {

void visitPre(T datum);

void visitIn(T datum);

void visitPost(T datum);

}

public class TreeNode<T> {

TreeNode<T> left;

TreeNode<T> right;

T datum;

TreeNode(TreeNode<T> l, TreeNode<T> r, T d) {

left = l;

right = r;

datum = d;

}

void traverse(Visitor<T> v) {

v.visitPre(datum);

if (left != null) left.traverse(v);

v.visitIn(datum);

if (right != null) right.traverse(v);

v.visitPost(datum);

}

}

No Silver Bullets

• These are all rules of thumb; but there is no
panacea, and every rule has its exceptions

• You can only learn by doing – we can't do it
for you

• Following software engineering rules only
makes success more likely!

35

