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Lecture 11: Sorting

InsertionSort

• Many people sort cards this 
way

• Invariant: 
– everything to left of i is 

already sorted

• Worst-case is O(n2)
– Consider reverse-sorted input

• Best-case is O(n)
– Consider sorted input

• Expected case is O(n2)
– Expected number of 

inversions is n(n–1)/4
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//sort a[], an array of int

for (int i = 1; i < a.length; i++) {

int temp = a[i];

int k;

for (k = i; 0 < k && temp < a[k–1]; k––)

a[k] = a[k–1];

a[k] = temp;

}

SelectionSort

• To sort an array of size n: 

– Examine a[0] to a[n–1]; 
find the smallest one and 
swap it with a[0]

– Examine a[1] to a[n–1]; 
find the smallest one and 
swap it with a[1]

– In general, in step i, 
examine a[i] to a[n–1]; 
find the smallest one and 
swap it with a[i]

• This is the other 
common way for people 
to sort cards

• Runtime

– Worst-case O(n2)

– Best-case O(n2)

– Expected-case O(n2)

3

Divide & Conquer?

• It often pays to

– Break the problem into smaller subproblems,

– Solve the subproblems separately, and then

– Assemble a final solution

• This technique is called divide-and-conquer

– Caveat: It won’t help unless the partitioning and 
assembly processes are inexpensive

• Can we apply this approach to sorting?

4

MergeSort

• Quintessential divide-and-conquer algorithm

• Divide array into equal parts, sort each part, then 
merge

• Questions:
– Q1: How do we divide array into two equal parts?

• A1: Find middle index: a.length/2

– Q2: How do we sort the parts?
• A2: call MergeSort recursively!

– Q3: How do we merge the sorted subarrays?
• A3: We have to write some (easy) code
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Merging Sorted Arrays A and B

• Create an array C of size = size of A + size of B
• Keep three indices:

– i into A
– j into B
– k into C

• Initialize all three indices to 0 (start of each array)
• Compare element A[i] with B[j], and move the smaller 

element into C[k]
• Increment i or j,  whichever one we took, and k
• When either A or B becomes empty, copy remaining 

elements from the other array (B or A, respectively) 
into C
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Merging Sorted Arrays 
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MergeSort Analysis

• Outline (detailed code on 
the website)
– Split array into two halves
– Recursively sort each half
– Merge the two halves

• Merge = combine two 
sorted arrays to make a 
single sorted array
– Rule: always choose the 

smallest item
– Time: O(n) where n is the 

combined size of the two 
arrays

• Runtime recurrence
– Let T(n) be the time to sort an 

array of size n
– T(n) = 2T(n/2) + O(n)
– T(1) = 1

• Can show by induction that 
T(n) is O(n log n)

• Alternately, can see that 
T(n) is O(n log n) by looking 
at tree of recursive calls
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MergeSort Notes

• Asymptotic complexity: O(n log n)
– Much faster than O(n2)

• Disadvantage
– Need extra storage for temporary arrays
– In practice, this can be a disadvantage, even though MergeSort

is asymptotically optimal for sorting
– Can do MergeSort in place, but this is very tricky (and it slows 

down the algorithm significantly)
– MergeSort is great for huge datasets distributed over multiple 

computers (e.g. map-reduce)

• Are there good sorting algorithms that do not use so much 
extra storage?
– Yes: QuickSort
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QuickSort

• Intuitive idea

– Given an array A to sort, choose a pivot value p

– Partition A into two subarrays, AX and AY

• AX contains only elements ≤ p

• AY contains only elements ≥ p

– Sort subarrays AX and AY separately

– Concatenate (not merge!) sorted AX and AY to get 
sorted A

• Concatenation is easier than merging – O(1)
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QuickSort Questions

• Key problems
– How should we choose a 

pivot?
– How do we partition an 

array in place?

• Partitioning in place
– Can be done in O(n) time 

(next slide)

• Choosing a pivot
– Ideal pivot is the median, 

since this splits array in half
– Computing the median of 

an unsorted array is O(n), 
but algorithm is quite 
complicated

• Popular heuristics:
– Use first value in array 

(usually not a good choice)
– Use middle value in array
– Use median of first, last, 

and middle values in array
– Choose a random element
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In-Place Partitioning

13

How can we move all the blues to the left of all the reds?

1. Keep two indices, LEFT and RIGHT

2. Initialize LEFT at start of array and RIGHT at end of array

3. Invariant: all elements to left of LEFT are blue

all elements to right of RIGHT are red

4. Keep advancing indices until they pass, maintaining invariant
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Now neither LEFT nor RIGHT can advance and maintain invariant.

We can swap red and blue pointed to by LEFT and RIGHT indices.

After swap, indices can continue to advance until next conflict.
swap

swap

swap

• Once indices cross, partitioning is done

• If you replace blue with ≤ p and red with ≥ p, this is
exactly what we need for QuickSort partitioning

• Notice that after partitioning, array is partially 
sorted

• Recursive calls on partitioned subarrays will sort 
subarrays

• No need to copy/move arrays, since we partitioned 
in place
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QuickSort Analysis

• Runtime analysis (worst-case)
– Partition can work badly, producing this:

– Runtime recurrence
• T(n) = T(n–1) + n

– This can be solved to show worst-case T(n) is O(n2)

• Runtime analysis (expected-case)
– More complex recurrence

– Can solve to show expected T(n) is O(n log n)

• Improve constant factor by avoiding QuickSort on small 
sets
– Switch to InsertionSort (for example) for sets of size, say, ≤ 9

– Definition of small depends on language, machine, etc.
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p > p

Sorting Algorithm Summary

•The ones we have 
discussed
– InsertionSort

– SelectionSort

– MergeSort

– QuickSort

•Other sorting 
algorithms
– HeapSort (will revisit this)

– ShellSort (in text)

– BubbleSort (nice name)

– RadixSort

– BinSort

– CountingSort
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Why so many?  Do computer scientists 

have some kind of sorting fetish or what?

 Stable sorts: Ins, Sel, Mer

 Worst-case O(n log n): Mer, Hea

 Expected O(n log n):  Mer, Hea, Qui

 Best for nearly-sorted sets: Ins

 No extra space needed: Ins, Sel, Hea

 Fastest in practice: Qui

 Least data movement: Sel

Lower Bound for Sorting

• Goal: Determine the 
minimum time required 
to sort n items

• Note: we want worst-
case, not best-case time
– Best-case doesn’t tell us 

much; for example, we 
know Insertion Sort takes 
O(n) time on already-
sorted input

– Want to know the worst-
case time for the best 
possible algorithm

• But how can we prove 
anything about the best 
possible algorithm?
– We want to find 

characteristics that are 
common to all sorting 
algorithms

– Let’s limit attention to 
comparison-based 
algorithms and try to count 
number of comparisons
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Comparison Trees
• Comparison-based algorithms 

make decisions based on 
comparison of data elements

• This gives a comparison tree
• If the algorithm fails to 

terminate for some input, 
then the comparison tree is 
infinite

• The height of the comparison 
tree represents the worst-
case number of comparisons
for that algorithm

• Will show that any correct 
comparison-based algorithm 
must make at least n log n 
comparisons in the worst case
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a[i] < a[j]

yesno

Lower Bound for Comparison Sorting

• Say we have a correct comparison-based algorithm

• Suppose we want to sort the elements in an array B[]

• Assume the elements of B[] are distinct

• Any permutation of the elements is initially possible

• When done, B[] is sorted

• But the algorithm could not have taken the same path 
in the comparison tree on different input permutations
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Lower Bound for Comparison 
Sorting

•How many input permutations are possible?  
n! ~ 2n log n

•For a comparison-based sorting algorithm to 
be correct, it must have at least that many 
leaves in its comparison tree

•to have at least n! ~ 2n log n leaves, it must 
have height at least n log n (since it is only 
binary branching, the number of nodes at 
most doubles at every depth)

•therefore its longest path must be of length 
at least n log n, and that it its worst-case 
running time
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java.lang.Comparable<T> 

Interface
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 public int compareTo(T x);

 Returns a negative, zero, or positive value

 negative if this is before x

 0 if this.equals(x)

 positive if this is after x

 Many classes implement Comparable

 String, Double, Integer, Character, Date,…

 If a class implements Comparable, then its compareTo

method is considered to define that class’s natural ordering

 Comparison-based sorting methods should work with 
Comparable for maximum generality


