
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 11: Sorting

InsertionSort

• Many people sort cards this
way

• Invariant:
– everything to left of i is

already sorted

• Worst-case is O(n2)
– Consider reverse-sorted input

• Best-case is O(n)
– Consider sorted input

• Expected case is O(n2)
– Expected number of

inversions is n(n–1)/4
2

//sort a[], an array of int

for (int i = 1; i < a.length; i++) {

int temp = a[i];

int k;

for (k = i; 0 < k && temp < a[k–1]; k––)

a[k] = a[k–1];

a[k] = temp;

}

SelectionSort

• To sort an array of size n:

– Examine a[0] to a[n–1];
find the smallest one and
swap it with a[0]

– Examine a[1] to a[n–1];
find the smallest one and
swap it with a[1]

– In general, in step i,
examine a[i] to a[n–1];
find the smallest one and
swap it with a[i]

• This is the other
common way for people
to sort cards

• Runtime

– Worst-case O(n2)

– Best-case O(n2)

– Expected-case O(n2)

3

Divide & Conquer?

• It often pays to

– Break the problem into smaller subproblems,

– Solve the subproblems separately, and then

– Assemble a final solution

• This technique is called divide-and-conquer

– Caveat: It won’t help unless the partitioning and
assembly processes are inexpensive

• Can we apply this approach to sorting?

4

MergeSort

• Quintessential divide-and-conquer algorithm

• Divide array into equal parts, sort each part, then
merge

• Questions:
– Q1: How do we divide array into two equal parts?

• A1: Find middle index: a.length/2

– Q2: How do we sort the parts?
• A2: call MergeSort recursively!

– Q3: How do we merge the sorted subarrays?
• A3: We have to write some (easy) code

5

Merging Sorted Arrays A and B

• Create an array C of size = size of A + size of B
• Keep three indices:

– i into A
– j into B
– k into C

• Initialize all three indices to 0 (start of each array)
• Compare element A[i] with B[j], and move the smaller

element into C[k]
• Increment i or j, whichever one we took, and k
• When either A or B becomes empty, copy remaining

elements from the other array (B or A, respectively)
into C

6

6/15/2011

2

Merging Sorted Arrays

7

1 3 4 4 6 7

C = merged array

B

A

1 3 4 6 8

4 7 7 8 9k

i

j

MergeSort Analysis

• Outline (detailed code on
the website)
– Split array into two halves
– Recursively sort each half
– Merge the two halves

• Merge = combine two
sorted arrays to make a
single sorted array
– Rule: always choose the

smallest item
– Time: O(n) where n is the

combined size of the two
arrays

• Runtime recurrence
– Let T(n) be the time to sort an

array of size n
– T(n) = 2T(n/2) + O(n)
– T(1) = 1

• Can show by induction that
T(n) is O(n log n)

• Alternately, can see that
T(n) is O(n log n) by looking
at tree of recursive calls

8

MergeSort Notes

• Asymptotic complexity: O(n log n)
– Much faster than O(n2)

• Disadvantage
– Need extra storage for temporary arrays
– In practice, this can be a disadvantage, even though MergeSort

is asymptotically optimal for sorting
– Can do MergeSort in place, but this is very tricky (and it slows

down the algorithm significantly)
– MergeSort is great for huge datasets distributed over multiple

computers (e.g. map-reduce)

• Are there good sorting algorithms that do not use so much
extra storage?
– Yes: QuickSort

9

QuickSort

• Intuitive idea

– Given an array A to sort, choose a pivot value p

– Partition A into two subarrays, AX and AY

• AX contains only elements ≤ p

• AY contains only elements ≥ p

– Sort subarrays AX and AY separately

– Concatenate (not merge!) sorted AX and AY to get
sorted A

• Concatenation is easier than merging – O(1)

10

11

20 31 24 19 45 56 4 65 5 72 14 99

pivot partition

5 19
14

4

31
72

56

65 45

24

99

204 5 14 19 24 31 45 56 65 72 99

QuickSort QuickSort

4 5 14 19 20 24 31 45 56 65 72 99

concatenate

QuickSort Questions

• Key problems
– How should we choose a

pivot?
– How do we partition an

array in place?

• Partitioning in place
– Can be done in O(n) time

(next slide)

• Choosing a pivot
– Ideal pivot is the median,

since this splits array in half
– Computing the median of

an unsorted array is O(n),
but algorithm is quite
complicated

• Popular heuristics:
– Use first value in array

(usually not a good choice)
– Use middle value in array
– Use median of first, last,

and middle values in array
– Choose a random element

12

6/15/2011

3

In-Place Partitioning

13

How can we move all the blues to the left of all the reds?

1. Keep two indices, LEFT and RIGHT

2. Initialize LEFT at start of array and RIGHT at end of array

3. Invariant: all elements to left of LEFT are blue

all elements to right of RIGHT are red

4. Keep advancing indices until they pass, maintaining invariant

14

Now neither LEFT nor RIGHT can advance and maintain invariant.

We can swap red and blue pointed to by LEFT and RIGHT indices.

After swap, indices can continue to advance until next conflict.
swap

swap

swap

• Once indices cross, partitioning is done

• If you replace blue with ≤ p and red with ≥ p, this is
exactly what we need for QuickSort partitioning

• Notice that after partitioning, array is partially
sorted

• Recursive calls on partitioned subarrays will sort
subarrays

• No need to copy/move arrays, since we partitioned
in place

15

QuickSort Analysis

• Runtime analysis (worst-case)
– Partition can work badly, producing this:

– Runtime recurrence
• T(n) = T(n–1) + n

– This can be solved to show worst-case T(n) is O(n2)

• Runtime analysis (expected-case)
– More complex recurrence

– Can solve to show expected T(n) is O(n log n)

• Improve constant factor by avoiding QuickSort on small
sets
– Switch to InsertionSort (for example) for sets of size, say, ≤ 9

– Definition of small depends on language, machine, etc.
16

p > p

Sorting Algorithm Summary

•The ones we have
discussed
– InsertionSort

– SelectionSort

– MergeSort

– QuickSort

•Other sorting
algorithms
– HeapSort (will revisit this)

– ShellSort (in text)

– BubbleSort (nice name)

– RadixSort

– BinSort

– CountingSort
17

Why so many? Do computer scientists

have some kind of sorting fetish or what?

 Stable sorts: Ins, Sel, Mer

 Worst-case O(n log n): Mer, Hea

 Expected O(n log n): Mer, Hea, Qui

 Best for nearly-sorted sets: Ins

 No extra space needed: Ins, Sel, Hea

 Fastest in practice: Qui

 Least data movement: Sel

Lower Bound for Sorting

• Goal: Determine the
minimum time required
to sort n items

• Note: we want worst-
case, not best-case time
– Best-case doesn’t tell us

much; for example, we
know Insertion Sort takes
O(n) time on already-
sorted input

– Want to know the worst-
case time for the best
possible algorithm

• But how can we prove
anything about the best
possible algorithm?
– We want to find

characteristics that are
common to all sorting
algorithms

– Let’s limit attention to
comparison-based
algorithms and try to count
number of comparisons

18

6/15/2011

4

Comparison Trees
• Comparison-based algorithms

make decisions based on
comparison of data elements

• This gives a comparison tree
• If the algorithm fails to

terminate for some input,
then the comparison tree is
infinite

• The height of the comparison
tree represents the worst-
case number of comparisons
for that algorithm

• Will show that any correct
comparison-based algorithm
must make at least n log n
comparisons in the worst case

19

a[i] < a[j]

yesno

Lower Bound for Comparison Sorting

• Say we have a correct comparison-based algorithm

• Suppose we want to sort the elements in an array B[]

• Assume the elements of B[] are distinct

• Any permutation of the elements is initially possible

• When done, B[] is sorted

• But the algorithm could not have taken the same path
in the comparison tree on different input permutations

20

Lower Bound for Comparison
Sorting

•How many input permutations are possible?
n! ~ 2n log n

•For a comparison-based sorting algorithm to
be correct, it must have at least that many
leaves in its comparison tree

•to have at least n! ~ 2n log n leaves, it must
have height at least n log n (since it is only
binary branching, the number of nodes at
most doubles at every depth)

•therefore its longest path must be of length
at least n log n, and that it its worst-case
running time

21

java.lang.Comparable<T>

Interface

22

 public int compareTo(T x);

 Returns a negative, zero, or positive value

 negative if this is before x

 0 if this.equals(x)

 positive if this is after x

 Many classes implement Comparable

 String, Double, Integer, Character, Date,…

 If a class implements Comparable, then its compareTo

method is considered to define that class’s natural ordering

 Comparison-based sorting methods should work with
Comparable for maximum generality

