

SelectionSort

- To sort an array of size n: This is the other Examine a[0] to a[n-1]; find the smallest one and swap it with a[0]
- Examine a[1] to a[n-1]; find the smallest one and swap it with a[1]
- In general, in step i, examine a[i] to a[n-1]; find the smallest one and swap it with a[i]
- common way for people to sort cards
- Runtime
 - Worst-case O(n²)
 - Best-case O(n²)
 - Expected-case O(n²)

Divide & Conquer?

- It often pays to
 - Break the problem into smaller subproblems,
 - Solve the subproblems separately, and then - Assemble a final solution
- This technique is called divide-and-conquer
- Caveat: It won't help unless the partitioning and assembly processes are inexpensive
- · Can we apply this approach to sorting?

MergeSort

- · Quintessential divide-and-conquer algorithm
- · Divide array into equal parts, sort each part, then merge
- Questions:
 - Q1: How do we divide array into two equal parts? A1: Find middle index: a.length/2
 - Q2: How do we sort the parts?
 - A2: call MergeSort recursively!
 - Q3: How do we merge the sorted subarrays? • A3: We have to write some (easy) code

Merging Sorted Arrays A and B

- Create an array C of size = size of A + size of B
- Keep three indices:
 - i into A
 - j into B
 - k into C
- Initialize all three indices to 0 (start of each array)
- Compare element A[i] with B[j], and move the smaller element into C[k]
- Increment i or j, whichever one we took, and k
- When either A or B becomes empty, copy remaining elements from the other array (B or A, respectively) into C

1

- Asymptotic complexity: O(n log n) Much faster than O(n²)
- Disadvantage
 - Need extra storage for temporary arrays
 - In practice, this can be a disadvantage, even though MergeSort is asymptotically optimal for sorting

 - Can do MergeSort in place, but this is very tricky (and it slows down the algorithm significantly)
 - MergeSort is great for huge datasets distributed over multiple computers (e.g. map-reduce)
- · Are there good sorting algorithms that do not use so much extra storage?
 - Yes: QuickSort

- Intuitive idea
 - Given an array A to sort, choose a pivot value p
 - Partition A into two subarrays, AX and AY
 - AX contains only elements ≤ p
 - AY contains only elements $\geq p$
 - Sort subarrays AX and AY separately
 - Concatenate (not merge!) sorted AX and AY to get sorted A
 - Concatenation is easier than merging O(1)

												_
		• •										
		+	_						t			
Now neither												
We can swap											ces.	swap
After swap, ir	luices	can	conunu	le lo	auva	nce	unui	next	COLI	IICL.		
				_	_	_	_	_	_	_		
									-			
		1							<u>+</u>			
			†	-				+		-		swap
		_	+	I				+				
				-	-	-	-	-	-	-		
				Ļ	-	-	-	-	-	-	-	swap
		-	_									
				1		†.						
												14

- Notice that after partitioning, array is partially sorted
- Recursive calls on partitioned subarrays will sort subarrays
- No need to copy/move arrays, since we partitioned in place

- How many input permutations are possible? $n! \sim 2^{n \log n}$
- For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree
- to have at least n! ~ 2^{n log n} leaves, it must have height at least n log n (since it is only binary branching, the number of nodes at most doubles at every depth)
- therefore its longest path must be of length at least n log n, and that it its worst-case running time

Comparison-based sorting methods should work with Comparable for maximum generality