
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 10: Asymptotic
Complexity and O

What Makes a Good Algorithm?

• Suppose you have two possible algorithms or
data structures that basically do the same thing;
which is better?

• Well… what do we mean by better?
– Faster?
– Less space?
– Easier to code?
– Easier to maintain?
– Required for homework?

• How do we measure time and space for an
algorithm?

2

Sample Problem: Searching

static boolean find(int[] a, int item) {

for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;

}

return false;

}

3

 Determine if a sorted array of integers contains a given integer

 First solution: Linear Search (check each element)

static boolean find(int[] a, int item) {

for (int x : a) {

if (x == item) return true;

}

return false;

}

Sample Problem: Searching

static boolean find (int[] a, int item) {

int low = 0;

int high = a.length - 1;

while (low <= high) {

int mid = (low + high)/2;

if (a[mid] < item)

low = mid + 1;

else if (a[mid] > item)

high = mid - 1;

else return true;

}

return false;

}

4

Second solution:
Binary Search

Linear Search vs Binary Search

• Which one is better?

– Linear Search is easier to
program

– But Binary Search is
faster… isn’t it?

• How do we measure to
show that one is faster
than the other

– Experiment

– Proof

• Which inputs do we use?

Simplifying assumption #1:
Use the size of the input

rather than the input itself

 For our sample search
problem, the input size is
n+1 where n is the array size

Simplifying assumption #2:
Count the number of “basic

steps” rather than
computing exact times

5

One Basic Step = One Time Unit

• Basic step:
– input or output of a scalar

value
– accessing the value of a scalar

variable, array element, or
field of an object

– assignment to a variable,
array element, or field of an
object

– a single arithmetic or logical
operation

– method invocation (not
counting argument evaluation
and execution of the method
body)

• For a conditional, count
number of basic steps on
the branch that is executed

• For a loop, count number of
basic steps in loop body
times the number of
iterations

• For a method, count
number of basic steps in
method body (including
steps needed to prepare
stack-frame)

6

6/15/2011

2

Runtime vs Number of Basic Steps

• But is this cheating?
– The runtime is not the

same as the number of
basic steps

– Time per basic step varies
depending on computer,
on compiler, on details of
code…

• Well…yes, in a way
– But the number of basic

steps is proportional to the
actual runtime

• Which is better?
– n or n2 time?
– 100 n or n2 time?
– 10,000 n or n2 time?

• As n gets large,
multiplicative constants
become less important

• Simplifying assumption #3:
– Ignore multiplicative

constants

7

Using Big-O to Hide Constants

• We say f(n) is order of g(n) if f(n) is bounded
by a constant times g(n)

• Notation: f(n) is O(g(n))

• Roughly, f(n) is O(g(n)) means that f(n) grows
like g(n) or slower, to within a constant factor

• "Constant" means fixed and independent of n

8

Formal definition:

f(n) is O(g(n)) if there exist constants c and N

such that for all n ≥ N, f(n) ≤ c·g(n)

A Graphical View

• To prove that f(n) is O(g(n)):
– Find an N and c such that f(n) ≤ c g(n) for all n ≥ N

– We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

9

c·g(n)

f(n)

N

Big-O Examples

• Claim: 100 n + log n is O(n)

– We know log n ≤ n for n ≥ 1

– So 100 n + log n ≤ 101 n for n ≥ 1

– So by definition, 100 n + log n is O(n)
for c = 101 and N = 1

• Claim: logB n is O(logA n)

– since logB n is (logB A)(logA n)

• Question: Which grows faster, n or log n?

10

Big-O Examples

• Let f(n) = 3n2 + 6n – 7
– f(n) is O(n2)
– f(n) is O(n3)
– f(n) is O(n4)
– …

• g(n) = 4 n log n + 34 n – 89
– g(n) is O(n log n)
– g(n) is O(n2)

• h(n) = 20·2n + 40n
– h(n) is O(2n)

• a(n) = 34
– a(n) is O(1)

11

 Only the leading term (the

term that grows most rapidly)

matters

Problem-Size Examples

• Suppose we have a computing device that can
execute 1000 operations per second; how large a
problem can we solve?

12

1 second 1 minute 1 hour

n 1000 60,000 3,600,000

n log n 140 4893 200,000

n2 31 244 1897

3n2 18 144 1096

n3 10 39 153

2n 9 15 21

6/15/2011

3

Commonly Seen Time Bounds

13

O(1) constant excellent

O(log n) logarithmic excellent

O(n) linear good

O(n log n) n log n pretty good

O(n2) quadratic often OK

O(n3) cubic maybe OK

O(2n) exponential too slow

Worst-Case/Expected-Case Bounds

• We can’t possibly determine time bounds for
all possible inputs of size n

• Simplifying assumption #4:
Determine number of steps for either

– worst-case: Determine how much time is needed
for the worst possible input of size n

– expected-case: Determine how much time is
needed on average for all inputs of size n

14

Our Simplifying Assumptions

• Use the size of the input rather than the input itself – n

• Count the number of “basic steps” rather than
computing exact times

• Multiplicative constants and small inputs ignored
(order-of, big-O)

• Determine number of steps for either
– worst-case

– expected-case

 These assumptions allow us to analyze algorithms
effectively and easily

15

Worst-Case Analysis of Searching

• Linear Search

static boolean find (int[] a, int item)
{

for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;

}

return false;

}

worst-case time = O(n)

16

• Binary Search

static boolean find (int[] a, int item) {

int low = 0;

int high = a.length - 1;

while (low <= high) {

int mid = (low + high)/2;

if (a[mid] < item)

low = mid+1;

else if (a[mid] > item)

high = mid - 1;

else return true;

}

return false;

}

worst-case time = O(log n)

Comparison of Algorithms

17

.0

7.5

15.0

22.5

30.0

0 7.5 15 22.5 30

M
ax

 N
u

m
b

er
 o

f
C

o
m

p
ar

is
o

n
s

Number of Items in Array

Linear vs. Binary Search

Linear Search Binary Search

Comparison of Algorithms

18

0

200

400

600

800

0 200 400 600 800

M
ax

 N
u

m
b

er
 o

f
C

o
m

p
ar

is
o

n
s

Number of Items in Array

Linear vs. Binary Search

Linear Search Binary Search

6/15/2011

4

Analysis of Matrix Multiplication

• Code for multiplying n-by-n matrices A and B:
– By convention, matrix problems are measured in

terms of n, the number of rows and columns
• Note that the input size is really 2n2, not n

– Worst-case time is O(n3)
– Expected-case time is also O(n3)

20

for (i = 0; i < n; i++)

for (j = 0; j < n; j++) {

C[i][j] = 0;

for (k = 0; k < n; k++)

C[i][j] += A[i][k]*B[k][j];

}

Remarks

• Once you get the hang of this, you can quickly
zero in on what is relevant for determining
asymptotic complexity

– For example, you can usually ignore everything
that is not in the innermost loop. Why?

• Main difficulty:

– Determining runtime for recursive programs

21

Why Bother with Runtime Analysis?

• Computers are so fast these
days that we can do whatever
we want using just simple
algorithms and data
structures, right?

• Well…not really – data-
structure/algorithm
improvements can be a very
big win

• Scenario:
– A runs in n2 msec
– A' runs in n2/10 msec
– B runs in 10 n log n msec

• Problem of size n=103

– A: 103 sec ≈ 17 minutes
– A': 102 sec ≈ 1.7 minutes
– B: 102 sec ≈ 1.7 minutes

• Problem of size n=106

– A: 109 sec ≈ 30 years
– A': 108 sec ≈ 3 years
– B: 2·105 sec ≈ 2 days

• 1 day = 86,400 sec ≈ 105 sec
• 1,000 days ≈ 3 years

22

Algorithms for the Human
Genome

•Human genome
= 3.5 billion nucleotides
~ 1 Gb

•@1 base-pair
instructions/ sec
– n2

 388445 years

– n log n 30.824 hours

– n 1 hour

23

Limitations of Runtime Analysis

• Big-O can hide a very large constant
– Example: selection
– Example: small problems

• The specific problem you want to solve may not be the
worst case
– Example: Simplex method for linear programming

• Your program may not be run often enough to make
analysis worthwhile
– Example: one-shot vs. every day
– You may be analyzing and improving the wrong part of the

program

• Should also use profiling tools

24

Summary
• Asymptotic complexity

– Used to measure of time (or space) required by an
algorithm

– Measure of the algorithm, not the problem
• Searching a sorted array

– Linear search: O(n) worst-case time
– Binary search: O(log n) worst-case time

• Matrix operations:
– Note: n = number-of-rows = number-of-columns
– Matrix-vector product: O(n2) worst-case time
– Matrix-matrix multiplication: O(n3) worst-case

time
• More later with sorting and graph algorithms

25

