What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
- Well... what do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?
- How do we measure time and space for an algorithm?

Sample Problem: Searching

- Determine if a sorted array of integers contains a given integer
- First solution: Linear Search (check each element)

```
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
static boolean find(int[] a, int item) {
    for (int x : a) {
        if (x == item) return true;
    }
    return false;
}
```


Linear Search vs Binary Search

- Which one is better?
- Linear Search is easier to program
- But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
- Experiment
- Proof
- Which inputs do we use?
- Simplifying assumption \#1:
- Use the size of the input rather than the input itself
- For our sample search problem, the input size is $\mathrm{n}+1$ where n is the array size
- Simplifying assumption \#2:
- Count the number of "basic steps" rather than computing exact times

Sample Problem: Searching

Second solution: Binary Search

```
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```


One Basic Step = One Time Unit

- Basic step:
- input or output of a scalar value
- accessing the value of a scalar variable, array element, or field of an object
- assignment to a variable, array element, or field of an object
- a single arithmetic or logical operation
- method invocation (not counting argument evaluation counting argument evaluation body)
- For a conditional, count number of basic steps on the branch that is executed
- For a loop, count number of basic steps in loop body times the number of iterations
- For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs Number of Basic Steps

- But is this cheating?
- The runtime is not the same as the number of basic steps
- Time per basic step varies depending on computer, on compiler, on details of code...
- Well...yes, in a way
- But the number of basic steps is proportional to the actual runtime
- Which is better?
- n or n^{2} time?
- 100 n or n^{2} time?
$-10,000 \mathrm{n}$ or n^{2} time?
- As n gets large, multiplicative constants become less important
- Simplifying assumption \#3:
- Ignore multiplicative constants

Using Big-O to Hide Constants

- We say $f(n)$ is order of $g(n)$ if $f(n)$ is bounded by a constant times $g(n)$
- Notation: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$)
- Roughly, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower, to within a constant factor
- "Constant" means fixed and independent of n

Formal definition:
$f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N, f(n) \leq c \cdot g(n)$

- To prove that $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$:
- Find an N and c such that $f(n) \leq c g(n)$ for all $n \geq N$
- We call the pair (c, N) a witness pair for proving that $f(n)$ is $O(g(n))$

Big-O Examples

- Claim: $100 \mathrm{n}+\log \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$
- We know $\log n \leq n$ for $n \geq 1$
- So $100 n+\log n \leq 101 n$ for $n \geq 1$
- So by definition, $100 n+\log n$ is $O(n)$
for $\mathrm{c}=101$ and $\mathrm{N}=1$
- Claim: $\log _{B} n$ is $O\left(\log _{A} n\right)$
- since $\log _{B} n$ is $\left(\log _{B} A\right)\left(\log _{A} n\right)$
- Question: Which grows faster, n or $\log n$?

Big-O Examples

- Let $f(n)=3 n^{2}+6 n-7$
$-f(n)$ is $O\left(n^{2}\right)$
$-f(n)$ is $O\left(n^{3}\right)$
- $f(n)$ is $O\left(n^{4}\right)$
- ...
- $g(n)=4 n \log n+34 n-89$
$-g(n)$ is $O(n \log n)$
$-\mathrm{g}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- $h(n)=20 \cdot 2^{n}+40 n$
$-h(n)$ is $O\left(2^{n}\right)$
- $a(n)=34$
$-a(n)$ is $O(1)$
\rightarrow Only the leading term (the term that grows most rapidly) matters

Problem-Size Examples

- Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	$3,600,000$
$n \log n$	140	4893	200,000
n^{2}	31	244	1897
$3 n^{2}$	18	144	1096
n^{3}	10	39	153
2^{n}	9	15	21

Commonly Seen Time Bounds

$O(1)$	constant	excellent
$O(\log n)$	logarithmic	excellent
$O(n)$	linear	good
$O(n \log n)$	$n \log n$	pretty good
$O\left(n^{2}\right)$	quadratic	often OK
$O\left(n^{3}\right)$	cubic	maybe OK
$O\left(2^{n}\right)$	exponential	too slow

Worst-Case/Expected-Case Bounds

- We can't possibly determine time bounds for all possible inputs of size n
- Simplifying assumption \#4: Determine number of steps for either
- worst-case: Determine how much time is needed for the worst possible input of size n
- expected-case: Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

- Use the size of the input rather than the input itself - n
- Count the number of "basic steps" rather than computing exact times
- Multiplicative constants and small inputs ignored (order-of, big-O)
- Determine number of steps for either
- worst-case
- expected-case
\rightarrow These assumptions allow us to analyze algorithms effectively and easily

Worst-Case Analysis of Searching

Comparison of Algorithms

Comparison of Algorithms

Analysis of Matrix Multiplication

- Code for multiplying n-by-n matrices A and B :
- By convention, matrix problems are measured in terms of n, the number of rows and columns
- Note that the input size is really $2 n^{2}$, not n
- Worst-case time is $O\left(n^{3}\right)$
- Expected-case time is also $\mathrm{O}\left(\mathrm{n}^{3}\right)$

```
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        C[i][j] = 0;
        for (k = 0; k < n; k++)
            C[i][j] += A[i][k]*B[k][j];
    }
```


Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
- Well...not really - datastructure/algorithm improvements can be a very big win
- Scenario:
- A runs in $\mathrm{n}^{2} \mathrm{msec}$
- A' runs in $\mathrm{n}^{2} / 10 \mathrm{msec}$
- B runs in $10 \mathrm{n} \log \mathrm{n}$ msec
- Problem of size $n=10^{3}$
- A: $10^{3} \mathrm{sec} \approx 17$ minutes
- A': 10^{2} sec ≈ 1.7 minutes
- B: $10^{2} \mathrm{sec} \approx 1.7$ minutes
- Problem of size $n=10^{6}$
- A: $10^{9} \sec \approx 30$ years
- $\mathrm{A}^{\prime}: 10^{8} \sec \approx 3$ years
- B: $2 \cdot 10^{5} \mathrm{sec} \approx 2$ days
- 1 day $=86,400 \mathrm{sec} \approx 105 \mathrm{sec}$
- 1,000 days ≈ 3 years

Remarks

- Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
- For example, you can usually ignore everything that is not in the innermost loop. Why?
- Main difficulty:
- Determining runtime for recursive programs

