
3/1/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2010

Thorsten Joachims

Lecture 9: Trees

Tree Overview
• Tree: recursive data

structure (similar to list)
– Each cell may have zero or

more successors (children)
– Each cell has exactly one

predecessor (parent)
except the root, which has
none

– Cells without children are
called leaves

– All cells are reachable
from root

• Binary tree: tree in which
each cell can have at most
two children: a left child
and a right child

2

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8

List-like tree

Tree Terminology
• M is the root of this tree

• G is the root of the left subtree of M

• B, H, J, N, and S are leaves

• N is the left child of P; S is the right
child

• P is the parent of N

• M and G are ancestors of D

• P, N, and S are descendants of W

• Node J is at depth 2 (i.e., depth =
length of path from root = number of
edges)

• Node W is at height 2 (i.e., height =
length of longest path to a leaf)

• A collection of several trees is called a
...?

3

M

G W

PJD

NHB S

Class for Binary Tree Cells
class TreeCell<T> {

private T datum;
private TreeCell<T> left, right;

public TreeCell(T x) {
datum = x; left = null; right = null;

}

public TreeCell(T x, TreeCell<T> lft,
TreeCell<T> rgt) {

datum = x;
left = lft;
right = rgt;

}
more methods: getDatum, setDatum, getLeft,

setLeft, getRight, setRight
}

4

... new TreeCell<String>("hello") ...

Class for General Trees

class GTreeCell {

private Object datum;

private GTreeCell left;

private GTreeCell sibling;

appropriate getter and

setter methods

}

5

5

4

7 8 9

2

7 8 3 1

5

4

7 8 9

2

7 8 3 1

General

tree

Tree

represented

using

GTreeCell

 Parent node points directly
only to its leftmost child

 Leftmost child has pointer to
next sibling, which points to
next sibling, etc.

Applications of Trees
• Most languages (natural and computer) have a

recursive, hierarchical structure

• This structure is implicit in ordinary textual
representation

• Recursive structure can be made explicit by
representing sentences in the language as trees:
Abstract Syntax Trees (ASTs)

• ASTs are easier to optimize, generate code from,
etc. than textual representation

• A parser converts textual representations to AST

6

3/1/2011

2

Example
• Expression

grammar:
– E → integer
– E → (E + E)

• In textual
representation
– Parentheses show

hierarchical structure

• In tree
representation
– Hierarchy is explicit in

the structure of the tree

7

-34 -34

(2 + 3) +

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text AST Representation

Recursion on Trees

• Recursive methods can be written to operate on
trees in an obvious way

• Base case
– empty tree

– leaf node

• Recursive case
– solve problem on left and right subtrees

– put solutions together to get solution for full tree

8

Searching in a Binary Tree

public static boolean treeSearch(Object x,

TreeCell node) {

if (node == null) return false;

if (node.datum.equals(x)) return true;

return treeSearch(x, node.left) ||

treeSearch(x, node.right);

}

9

9

8 3 5 7

2

0

 Analog of linear search in lists: given
tree and an object, find out if object is
stored in tree

 Easy to write recursively, harder to
write iteratively

Binary Search Tree (BST)

• If the tree data are ordered – in any
subtree,
– All left descendents of node come before node
– All right descendents of node come after node

• This makes it much faster to search

10

2

0 3 7 9

5

8

public static boolean treeSearch (Object x, TreeCell node) {

if (node == null) return false;

if (node.datum.equals(x)) return true;

if (node.datum.compareTo(x) > 0)

return treeSearch(x, node.left);

else

return treeSearch(x, node.right);

}

Building a BST

• To insert a new item
– Pretend to look for the item

– Put the new node in the
place where you fall off the
tree

• This can be done using
either recursion or iteration

• Example
– Tree uses alphabetical order

– Months appear for insertion
in calendar order

11

jan

feb mar

apr mayjun

jul

What Can Go Wrong?

• A BST makes searches very
fast, unless…
– Nodes are inserted in

alphabetical order

– In this case, we’re basically
building a linked list (with
some extra wasted space
for the left fields that
aren’t being used)

• BST works great if data
arrives in random order

12

jan

feb

mar

apr

may

jun

jul

3/1/2011

3

Printing Contents of BST

• Because of the
ordering rules for
a BST, it’s easy to
print the items in
alphabetical order
– Recursively print

everything in the
left subtree

– Print the node
– Recursively print

everything in the
right subtree

13

/**

* Show the contents of the BST in

* alphabetical order.

*/

public void show () {

show(root);

System.out.println();

}

private static void show(TreeNode node) {

if (node == null) return;

show(node.lchild);

System.out.print(node.datum + " ");

show(node.rchild);

}

Output: apr feb jan jul jun mar may

Tree Traversals

• “Walking” over the whole
tree is a tree traversal
– This is done often enough

that there are standard
names

– The previous example is an
inorder traversal
• Process left subtree
• Process node
• Process right subtree

• Note: we’re using this for
printing, but any kind of
processing can be done

• There are other standard
kinds of traversals

• Preorder traversal
– Process node
– Process left subtree
– Process right subtree

• Postorder traversal
– Process left subtree
– Process right subtree
– Process node

14

Reading and Writing Trees

• Write t to file in pre-order:
IF t==null THEN

print null
ELSE

Print root
Recurse left subtree
Recurse right subtree

• Read from file in pre-order:
next_token = read
IF next_token == null THEN

return null
ELSE

root = next_token
left = Recurse left subtree
right = Recurse right subtree
return new TreeCell(root,left,right)

• Example:

• File:
jan feb apr null null null
mar jun jul null null null
may null null

15

jan

feb mar

apr mayjun

jul

Some Useful Methods

16

//determine if a node is a leaf

public static boolean isLeaf(TreeCell node) {

return (node != null) && (node.left == null)

&& (node.right == null);

}

//compute height of tree using postorder traversal

public static int height(TreeCell node) {

if (node == null) return -1; //empty tree

if (isLeaf(node)) return 0;

return 1 + Math.max(height(node.left),

height(node.right));

}

//compute number of nodes using postorder traversal

public static int nNodes(TreeCell node) {

if (node == null) return 0;

return 1 + nNodes(node.left) + nNodes(node.right);

}

Useful Facts about Binary Trees

• 2d = maximum number
of nodes at depth d

• If height of tree is h
– Minimum number of

nodes in tree =
h + 1

– Maximum number of
nodes in tree =
20 + 21 + … + 2h = 2h+1 – 1

• Complete binary tree
– All levels of tree down to

a certain depth are
completely filled

17

5

4

7 8

2

0 4

depth

0

1

2

5

2

4

Height 2,

minimum number of nodes

Height 2,

maximum number of nodes

Tree with Parent Pointers

• In some applications, it is
useful to have trees in which
nodes can reference their
parents

• Analog of doubly-linked lists

18

5

4

7 8

2

3/1/2011

4

Things to Think About

• What if we want to
delete data from a BST?

• A BST works great as
long as it’s balanced

– How can we keep it
balanced?

19

jan

feb mar

apr mayjun

jul

Suffix Trees

• Given a string s, a suffix tree for s is a tree such that
– each edge has a unique label, which is a non-null substring

of s

– any two edges out of the same node have labels beginning
with different characters

– the labels along any path from the root to a leaf
concatenate together to give a suffix of s

– all suffixes are represented by some path

– the leaf of the path is labeled with the index of the first
character of the suffix in s

• Suffix trees can be constructed in linear time

20

Suffix Trees

21

a cadabra$

abracadabra$

bra ra

cadabra$

$dabra$

cadabra$

cadabra$ cadabra$dabra$

$

$ $

$ bra

Suffix Trees
• Useful in string matching algorithms (e.g.,

longest common substring of 2 strings)
• Most algorithms linear time
• Used in genomics (human genome is ~4GB)

22

Huffman Trees

23

0

0

0
0

0 0

1
1

1 1

1

1

s

e

a

e
t

st a

4063 26197

Fixed length encoding
197*2 + 63*2 + 40*2 + 26*2 = 652 bits

Huffman encoding
197*1 + 63*2 + 40*3 + 26*3 = 521 bits

Huffman Compression of “Ulysses”
Char #occ ascii bits and Huffman code

' ' 242125 00100000 3 110

'e' 139496 01100101 3 000

't' 95660 01110100 4 1010

'a' 89651 01100001 4 1000

'o' 88884 01101111 4 0111

'n' 78465 01101110 4 0101

'i' 76505 01101001 4 0100

's' 73186 01110011 4 0011

'h' 68625 01101000 5 11111

'r' 68320 01110010 5 11110

'l' 52657 01101100 5 10111

'u' 32942 01110101 6 111011

'g' 26201 01100111 6 101101

'f' 25248 01100110 6 101100

'.' 21361 00101110 6 011010

'p' 20661 01110000 6 011001

...

'7' 68 00110111 15 111010101001111

'/' 58 00101111 15 111010101001110

'X' 19 01011000 16 0110000000100011

'&' 3 00100110 18 011000000010001010

'%' 3 00100101 19 0110000000100010111

'+' 2 00101011 19 0110000000100010110

24

original size 11904320

compressed size 6822151

42.7% compression

3/1/2011

5

Decision Trees

• Classification:

– Attributes (e.g. is CC
used more than 200
miles from home?)

– Values (e.g. yes/no)

– Follow branch of tree
based on value of
attribute.

– Leaves provide
decision.

• Example:

– Should credit card
transaction be denied?

25

Remote Use?

Hotel?

> $10,000?Freq Trav?

Allow

Allow

Deny

Deny Deny

yes

yes

yes

yes

no

nono

no

BSP Trees

• BSP = Binary Space Partition

– Used to render 3D images composed of polygons (see
demo)

– Each node n has one polygon p as data

– Left subtree of n contains all polygons on one side of p

– Right subtree of n contains all polygons on the other
side of p

• Paint image from back to front. Order of traversal
determines occlusion!

26

Tree Summary
• A tree is a recursive data structure

– Each cell has 0 or more successors (children)

– Each cell except the root has at exactly one
predecessor (parent)

– All cells are reachable from the root

– A cell with no children is called a leaf

• Special case: binary tree
– Binary tree cells have a left and a right child

– Either or both children can be null

• Trees are useful for exposing the recursive structure
of natural language and computer programs

27

