
15/06/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 7: Software Design

Software Engineering

• The art by which we start with a problem
statement and gradually evolve a solution.

• There are whole books on this topic and most
companies try to use a fairly uniform
approach that all employees are expected to
follow.

• The IDE can help by standardizing the steps.

Top-Down Design

• Building a Search Engine:

• Refine the design at each step

• Decomposition / “Divide and Conquer”

Search Engine

Crawler Indexer
User

Interface

Queue
HTTP
Client

Inverted
Index

Ranking
Function

Database
HTTP

Server
Spelling

Correction

Term
Weighting

PagerankListHashmap

Bottom-Up Design

• Just the opposite: start with parts:

• Composition

• Build-It-Yourself (e.g. IKEA furniture)

Search Engine

Crawler Indexer
User

Interface

Queue
HTTP
Client

Inverted
Index

Ranking
Function

Database
HTTP

Server
Spelling

Correction

Term
Weighting

PagerankListHashmap

Top-Down vs. Bottom-Up

• Is one of these ways better? Not really!
• It’s sometimes good to alternate

• By coming to a problem from multiple angles you might
notice something you had previously overlooked

• Not the only ways to go about it

• With Top-Down it’s harder to test early because
parts needed may not have been designed yet

• With Bottom-Up, you may end up needing
things different from how you built them

Software Process

• For simple programs, a simple process…

• But to use this process, you need to be sure that
the requirements are fixed and well understood!
– Many software problems are not like that
– Often customer refines the requirements when you try to

deliver the initial solution!

“Waterfall”

15/06/2011

2

Incremental & Iterative

• Deliver versions of the system in several small cycles:

• Recognizes that for some settings, software
development is like gardening.

• You plant seeds… see what does well… then replace the
plants that did poorly.

TESTING AND
TEST-DRIVEN DEVELOPMENT

The Importance of Testing

• Famous last words
– “Its all done, I just have not tested it yet”.

• Many people
– Write code without being sure it will work
– Press run and pray
– If it fails, they change something random
 Never work, and ruins weekend social plans.

• Test-Driven Development!

The Example

• A collection class SmallSet
• containing up to N objects (hence “small”)

• typical operations:

• we’ll implement add(), size()

add adds item

contains is item in the set?

size # items

Test Driven Development

• We’ll go about in small iterations
1.add a test

2.run all tests and watch the new one fail

3.make a small change

4.run all tests and see them all succeed

5.refactor (as needed)

• We’ll use JUnit

JUnit

• What do JUnit tests look like?
SmallSet.java
package edu.cornell.cs.cs2110;

public class SmallSet {

...

}

SmallSetTest.java
package edu.cornell.cs.cs2110;

import org.junit.Test;

import static org.junit.Assert.*;

public class SmallSetTest {

@Test public void testFoo() {

SmallSet s = new SmallSet();

...

assertTrue(...);

}

@Test public void testBar() {

...

}

}

15/06/2011

3

A List of Tests

• We start by thinking about how to test,
not how to implement

• size=0 on empty set

• size=N after adding N distinct elements

• adding element already in set doesn’t change size

• throw exception if adding too many

• ...

• Each test verifies a certain “feature”

A First Test

• We pick a feature and test it:

• This doesn’t compile: size()is undefined
• But that’s all right: we’ve started designing the

interface by using it

SmallSet
class SmallSet {}

SmallSetTest
class SmallSetTest {

@Test public void testEmptySetSize() {

SmallSet s = new SmallSet();

assertEquals(0, s.size());

}

}

Red Bar

• A test can be defined before the code is written

• Running the test
yields a red bar
indicating failure:

• If we add the size function and re-run the the
test, it works!

SmallSet
class SmallSet {

public int size() {

return 42;

}

}

Green Bar

• What’s the simplest way to make a test pass?

• “Fake it till you make it”

• Re-running yields the legendary JUnit Green
Bar:

• Move on with the next feature

SmallSet
class SmallSet {

public int size() {

return 0;

}

}

Adding Items

• To implement adding items, we first test for it:

• add() is undefined, so to run the test we
define it:

SmallSetTest
class SmallSetTest {

@Test public void testEmptySetSize() ...

@Test public void testAddOne() {

SmallSet s = new SmallSet();

s.add(new Object());

assertEquals(1, s.size());

}

}

SmallSet
public int size() ...

public void add(Object o) {}

Adding Items

• The test now fails as expected:
• It seems obvious we need to count the number

of items:

• And we get a green bar:

SmallSet
private int _size = 0;

public int size() {

return 0;

return _size;

}

public void add(Object o) {

++_size;

}

15/06/2011

4

Adding Something Again

• So what if we added an item already in the set?

• As expected, the test fails...

SmallSetTest
class SmallSetTest {

@Test public void testEmptySetSize() ...

@Test public void testAddOne() ...

@Test public void testAddAlreadyInSet() {

SmallSet s = new SmallSet();

Object o = new Object();

s.add(o);

s.add(o);

assertEquals(1, s.size());

}

}

Remember that Item?...

• We need to remember which items are in the
set...

• All tests pass, so we can refactor that loop...

SmallSet
private int _size = 0;

public static final int MAX = 10;

private Object _items[] = new Object[MAX];

...

public void add(Object o) {

for (int i=0; i < MAX; i++) {

if (_items[i] == o) {

return;

}

}

_items[_size] = o;

++_size;

}

Refactoring

• FOR-loop doesn’t “speak to us” as it could...

• All tests still pass, so we didn’t break it!

SmallSet (before)
public void add(Object o) {

for (int i=0; i < MAX; i++) {

if (_items[i] == o) {

return;

}

}

_items[_size] = o;

++_size;

}

SmallSet (after)
private boolean inSet(Object o) {

for (int i=0; i < MAX; i++) {

if (_items[i] == o) {

return true;

}

}

return false;

}

public void add(Object o) {

if (!inSet(o)) {

_items[_size] = o;

++_size;

}

}

Too Many

• What if we try to add more than SmallSet can hold?

• The test fails with an error:
ArrayIndexOutOfBoundsException

• We know why this occurred, but it should bother
us: “ArrayIndex” isn’t a sensible error for a “set”

SmallSetTest
...

@Test public void testAddTooMany() {

SmallSet s = new SmallSet();

for (int i=0; i < SmallSet.MAX; i++) {

s.add(new Object());

}

s.add(new Object());

}

Size Matters

• We first have add() check the size,

• ... re-run the tests, check for green,
define our own exception...

• ... re-run the tests, check for green,
and...

SmallSet
public void add(Object o) {

if (!inSet(o) && _size < MAX) {

_items[_size] = o;

++_size;

}

}

SmallSetFullException
public class SmallSetFullException extends Error {}

Testing for Exceptions

• ... finally test for our exception:

• The test fails as expected,
so now we fix it...

SmallSetTest
@Test public void testAddTooMany() {

SmallSet s = new SmallSet();

for (int i=0; i < SmallSet.MAX; i++) {

s.add(new Object());

}

try {

s.add(new Object());

fail(“SmallSetFullException expected”);

}

catch (SmallSetFullException e) {}

}

15/06/2011

5

Testing for Exceptions

• ... so now we modify add() to throw:

• All tests now pass, so we’re done:

SmallSet
public void add(Object o) {

if (!inSet(o) && _size < MAX) {

if (_size >= MAX) {

throw new SmallSetFullException();

}

_items[_size] = o;

++_size;

}

}

After all Tests are Passed

• Is the code is correct?
– Yes, if we wrote the right tests.

• Is the code efficient?
– Probably used simplest solution first.
– Replace simple data structures with better data structures.
– New ideas on how to compute the same while doing less work.

• Is the code readable, elegant, and easy to maintain?
– It is very common to find some chunk of working code, make a replica, and

then edit the replica.
– But this makes your software fragile

• Later changes have to be done on all instances, or
• some become inconsistent

– Duplication can arise in many ways:
• constants (repeated “magic numbers”)

• code vs. comment
• within an object’s state
• ...

“DRY” Principle

• Don’t Repeat Yourself

• A nice goal is to have each piece of
knowledge live in one place

• But don’t go crazy over it

– DRYing up at any cost can increase dependencies
between code

– “3 strikes and you refactor” (i.e., clean up)

Simple Refactoring

• Renaming variables, methods, classes for readability.

• Explicitly defining constants:

– If your application later gets used as part of a Nasa mission
to Mars, it won’t make mistakes

– Every place that the gravitational constant shows up in your
program a reader will realize that this is what she is looking
at

– The compiler may actually produce better code

public double weight(double mass) {
return mass * 9.80665;

}

static final double GRAVITY = 9.80665;

public double weight(double mass) {
return mass * GRAVITY;

}

Extract Method

• A comment explaining what is being done
usually indicates the need to extract a method

• One of the most common refactorings

public double totalArea() {

...

// now add the circle

area += PI * pow(radius,2);

...

}

public double totalArea() {

...

area += circleArea(radius);

...

}

private double circleArea(double radius) {

return PI * pow(radius, 2);

}

Extract Method

• Simplifying conditionals with Extract
Method
before

if (date.before(SUMMER_START) || date.after(SUMMER_END)) {

charge = quantity * _winterRate + _winterServiceCharge;

}

else {

charge = quantity * _summerRate;

}

after
if (isSummer(date)) {

charge = summerCharge(quantity);

}

else {

charge = winterCharge(quantity);

}

15/06/2011

6

Review

• Started with a “to do” list of tests / features
• could have been expanded

as we thought of more tests / features

• Added features in small iterations

• “a feature without a test doesn’t exist”

Is testing obligatory?

• When you write code in professional settings
with teammates, definitely!
– In such settings, failing to test your code just means

you are inflicting errors you could have caught on
teammates!

– People get fired for this sort of thing!
– So… in industry… test or perish!

• But what if code is just “for yourself”?
– Testing can still help you debug, and if you go to the

trouble of doing the test, JUnit helps you “keep it” for
re-use later.

– “I have never written a program that was correct
before I tested and debugged it.” Prof. Joachims

Fixing a Bug

• What if after releasing we found a bug?

Famous last words: “It works!”

A bug can reveal a missing test

• … but can also reveal that the specification was
faulty in the first place, or incomplete
– Code “evolves” and some changing conditions can

trigger buggy behavior

– This isn’t your fault or the client’s fault but finger
pointing is common

• Great testing dramatically reduces bug rates
– And can make fixing bugs way easier

– But can’t solve everything: Paradise isn’t attainable in
the software industry

Reasons for TDD

• By writing the tests first, we
• test the tests

• design the interface by using it

• ensure the code is testable

• ensure good test coverage

• By looking for the simplest way to make
tests pass,

• the code becomes “as simple as possible, but no
simpler”

• may be simpler than you thought!

Not the Whole Story

• There’s a lot more worth knowing about TDD
• What to test / not to test

» e.g.: external libraries?

• How to refactor tests

• Fixtures

• Mock Objects

• Crash Test Dummies

• ...

Beck, Kent: Test-Driven Development: By Example

15/06/2011

7

How people big really big programs

• When applications are small, you can understand
every element of the system

• But as systems get very large and complex, you
increasingly need to think in terms of interfaces,
documentation that defines how modules work,
and your code is more fragmented

• This forces you into a more experimental style

Testing is a part of that style!

• Once you no longer know how big parts of the
system even work (or if they work), you instead
begin to think in terms of
– Code you’ve written yourself. You tested it and know

that it works!

– Modules you make use of. You wrote experiments to
confirm that they work the way you need them to
work

– Tests of the entire complete system, to detect issues
visible only when the whole thing is running or only
under heavy load

Junit testing isn’t enough

• For example, many systems suffer from “leaks”
– Such as adding more and more objects to an ArrayList
– The amount of memory just grows and grows

• Some systems have issues triggered only in big
deployments, like cloud computing settings

• Sometimes the application “specification” was flawed, and
a correct implementation of the specification will look
erroneous to the end user

• But a thorough test plan can reveal all such problems

The Q/A cycle

• Real companies have quality assurance teams

• They take the code and refuse to listen to all the
long-winded explanations of why it works

• Then they do their own, independent, testing

• And then they send back the broken code with a long
list of known bugs!

• Separating development from Q/A really helps

Why is Q/A a cycle?

• Each new revision may fix bugs but could also
break things that were previously working

• Moreover, during the lifetime of a complex
application, new features will often be added and
those can also require Q/A

• Thus companies think of software as having a very
long “life cycle”. Developing the first version is
only the beginning of a long road!

Even with fantastic Q/A…

• The best code written by professionals will still have
some rate of bugs
– They reflect design oversights, or bugs that Q/A somehow

didn’t catch
– Evolutionary change in requirements
– Incompatibilities between modules developed by different

people, or enhancements made by people who didn’t fully
understand the original logic

• So never believe that software will be flawless
• Our goal in cs2110 is to do as well as possible
• In later CS courses we’ll study “fault tolerance”!

