15/06/2011

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011
Thorsten Joachims

Lecture 7: Software Design

Software Engineering

* The art by which we start with a problem
statement and gradually evolve a solution.

* There are whole books on this topic and most
companies try to use a fairly uniform
approach that all employees are expected to
follow.

* The IDE can help by standardizing the steps.

Top-Down Design

* Building a Search Engine:

Search Engine

User
Interface

Crawler Indexer

HTTP
Client

HTTP
Server

Inverted
Index

Ranking
Function

Spelling
Correction

Database

Term
Weighting

Pagerank

Hashmap

* Refine the design at each step
* Decomposition / “Divide and Conquer”

Bottom-Up Design

* Just the opposite: start with parts:

Search Engine

User
Interface

Crawler Indexer

HTTP
Client

Inverted
Index

Ranking
Function

Spelling
Correction

Database

Term
Weighting

Hashmap Pagerank

* Composition
* Build-It-Yourself (e.g. IKEA furniture)

Top-Down vs. Bottom-Up

* |s one of these ways better? Not really!
* It's sometimes good to alternate

* By coming to a problem from multiple angles you might
notice something you had previously overlooked

* Not the only ways to go about it

* With Top-Down it’s harder to test early because
parts needed may not have been designed yet

¢ With Bottom-Up, you may end up needing
things different from how you built them

Software Process

* For simple programs, a simple process...

~
=] “Waterfall’
=
=H

¢ But to use this process, you need to be sure that
the requirements are fixed and well understood!
— Many software problems are not like that

— Often customer refines the requirements when you try to
deliver the initial solution!

Incremental & lterative

* Deliver versions of the system in several small cycles:

Start

Select
Feature(s)

Design &
Impiement

* Recognizes that for some settings, software
development is like gardening.

* You plant seeds... see what does well... then replace the
plants that did poorly.

15/06/2011

TESTING AND
TEST-DRIVEN DEVELOPMENT

The Importance of Testing

* Famous last words
— “Its all done, | just have not tested it yet”.

* Many people
— Write code without being sure it will work
— Press run and pray
— If it fails, they change something random
- Never work, and ruins weekend social plans.

* Test-Driven Development!

The Example

* Acollection class SmallSet

* containing up to N objects (hence “small”)
* typical operations:

add adds item
contains is item in the set?
size #items

e we'llimplement add () , size()

Test Driven Development

* We'll go about in small iterations
1.add a test
2.run all tests and watch the new one fail
3.make a small change
4.run all tests and see them all succeed
5.refactor (as needed)

e We'll use JUnit

JUnit

* What do JUnit tests look like?

Smallset java SmallsetTest.java
package edu.cornell.cs.cs2110; | package edu.cornell.cs.cs2110;

public class SmallSet { import org.junit.Test;
import static org.junit.Assert.*;
}

public class SmallSetTest {
@Test public void testFoo() |
SmallSet s = new SmallSet();

assertTrue(...);
}

@Test public void testBar() {

}

A List of Tests

* We start by thinking about how to test,
not how to implement
* size=0 on empty set
* size=N after adding N distinct elements
* adding element already in set doesn’t change size
* throw exception if adding too many

* Each test verifies a certain “feature”

15/06/2011

A First Test

* We pick a feature and test it:

Smallset
class SmallSet {}

SmallSetTest
class SmallSetTest {

@Test public void testEmptySetSize () {
SmallSet s = new SmallSet();
assertEquals (0, s.size());

}

}

* This doesn’t compile: size () is undefined

* Butthat’s all right: we’ve started designing the
interface by using it

Red Bar

* Atest can be defined before the code is written

SmallSet
class SmallSet { ann Java
public int size() { S0 | B G |® S|P
return 42; 3 Pucka [T s [o = 0)(@ s
) e sher 8053 ssends 4
@
)

Buos 1 B Enees: O B Fuhas 1

I
* Running the test | -ooz
yields a red bar
indicating failure:

* If we add the size function and re-run the the
test, it works!

Green Bar

* What's the simplest way to make a test pass?

SmallSet
class SmallSet {
public int size() {
return 0;
}
}

* “Fake it till you make it”

* Re-running yields the legendary JUnit Green
Bar:

Runs: 1/1 HErors: 0 B Fallures: 0

s

* Move on with the next feature

Adding Items

* To implement adding items, we first test for it:

SmallSetTest
class SmallSetTest ({
@Test public void testEmptySetSize() ...

@Test public void testAddOne () {
SmallSet s = new SmallSet();
s.add (new Object());
assertEquals (1, s.size());

}

)

¢ add() isundefined, so to run the test we
define it: 'smaliset

public int size() ...

public void add(Object o) {}

Adding Items

* The test now fails as expected: n —

* It seems obvious we need to count the number

of items: spanser

private int _size = 0;

public int size () {
retwEr—o;
return _size;

}

public void add(Object o) {
++_size;

}
* And we get a green bar: |

Adding Something Again

* So what if we added an item already in the set?

SmallSetTest
class SmallSetTest {
@Test public void testEmptySetSize()

@Test public void testAddOne ()

@Test public void testAddAlreadyInSet() {
SmallSet s = new SmallSet();
Object o new Object();
s.add (o) ;
s.add (o) ;
assertEquals (1, s.size());

}

* As expected, the test fails... T —e———

15/06/2011

Remember that Item?...

* We need to remember which items are in the
set... Smallset
private int _size = 0;
public static final int MAX = 10;
private Object _items[] = new Object[MAX];

public void add(Object o) {

for (int i=0; i < MAX; i++) {

if (_items[i] == o) {
return;

}

}

_items[_size] = o;

++_size;

}

 All tests pass, so we can refactor that loop...
I

Refactoring

* FOR-loop doesn’t “speak to us” as it could...

SmallSet (before) SmallSet (after)
public void add(Object o) { private boolean inSet(Object o) {
for (int i=0; i < MAX; i++) { for (int i=0; i < MAX; i++) {
if (_items[i] == o) { if (_items[i] == o) {
return; return true;
i }
i
items(_size] = o; return false;
T+_size; }

}
public void add(Object o) {
if ('inSet(o)) {
_items[_size] = o;
++_size;
}
)

* All tests still pass, so we didn’t break it!
I

Too Many

* What if we try to add more than sma11iset can hold?
SmallSetTest

@Test public void testAddTooMany () {
SmallSet s = new SmallSet();
for (int i=0; i < SmallSet.MAX; i++) {
s.add (new Object());

}
s.add (new Object());
}

The test fails with an error: ————
ArrayIndexOutOfBoundsException

* We know why this occurred, but it should bother
us: “Arraylndex” isn’t a sensible error for a “set”

Size Matters

* We first have ada() check the size,
SmallSet
public void add(Object o) {
if (!inSet (o) && _size < MAX) {
_items[_size] = o;
++_size;
}
}

e ... re-run the tests, check for green, i
define our own exception...

SmallSetFullException
public class SmallSetFullException extends Error {}

* ...re-run the tests, check for green,
and...

Testing for Exceptions

* ... finally test for our exception:

SmallsetTest
@Test public void testAddTooMany () {
SmallSet s = new SmallSet();
for (int i=0; i < SmallSet.MAX; i++) {
s.add (new Object ());
}
try {
s.add (new Object());
fail (“SmallSetFullException expected”);
}
catch (SmallSetFullException e) {}
}

* The test fails as expected, n— —
so now we fix it...

Testing for Exceptions

* ... so now we modify add () to throw:

SmallSet
public void add(Object o) f{
if (linSet (o) && —sStze—<MAN)

if (_size >= MAX) {
throw new SmallSetFullException();
}
items[size] = o;
++_size;

}

* All tests now pass, so we're done:
|

15/06/2011

After all Tests are Passed

* Isthe code is correct?
— Yes, if we wrote the right tests.
* Isthe code efficient?
— Probably used simplest solution first.
— Replace simple data structures with better data structures.
— New ideas on how to compute the same while doing less work.
* Isthe code readable, elegant, and easy to maintain?
— Itis very common to find some chunk of working code, make a replica, and
then edit the replica.
— But this makes your software fragile
+ Later changes have to be done on all instances, or
* some become inconsistent
— Duplication can arise in many ways:
* constants (repeated “magic numbers”)
* code vs. comment
* within an object’s state

“DRY” Principle

* Don’t Repeat Yourself

* A nice goal is to have each piece of
knowledge live in one place

* But don’t go crazy over it

— DRYing up at any cost can increase dependencies
between code

— “3 strikes and you refactor” (i.e., clean up)

Simple Refactoring

Renaming variables, methods, classes for readability.

Explicitly defining constants:

public double weight(double mass){| static final double GRAVITY = 9.80665:
return mass * 9.80665;

public double weight(double mass) {
refurn mass * GRAVITY;

— If your application later gets used as part of a Nasa mission
to Mars, it won’t make mistakes

— Every place that the gravitational constant shows up in your
program a reader will realize that this is what she is looking
at

— The compiler may actually produce better code

Extract Method

* A comment explaining what is being done
usually indicates the need to extract a method
public double totalArea() { public double totalArea() {
}}-ncw add the circle aroa += circleArea(radius);

area += PI * pow(radius,2);

private double circleArea(double radius) f{

return PI * pow(radius, 2);

* One of the most common refactorings

Extract Method

* Simplifying conditionals with Extract

Method
before
if (date.before (SUMMER_START) || date.after (SUMMER_END)) {

charge = quantity * _winterRate + _winterServiceCharge;
}
else {

charge = quantity * _summerRate;

}

after
if (isSummer (date)) {
charge = summerCharge (quantity);
}
else {
charge = winterCharge (quantity);
}

Review

¢ Started with a “to do” list of tests / features

* could have been expanded
as we thought of more tests / features

* Added features in small iterations

(1) add test

@ refactor P —

~ ~

(2) make It pass

* “afeature without a test doesn’t exist”

15/06/2011

Is testing obligatory?

* When you write code in professional settings
with teammates, definitely!
— In such settings, failing to test your code just means

you are inflicting errors you could have caught on
teammates!

— People get fired for this sort of thing!
— So...in industry... test or perish!
e But what if code is just “for yourself”?

— Testing can still help you debug, and if you go to the
trouble of doing the test, JUnit helps you “keep it” for
re-use later.

— “I' have never written a program that was correct
before | tested and debugged it.” Prof. Joachims

Fixing a Bug

* What if after releasing we found a bug?

Famous last words: “It works!”

A bug can reveal a missing test

* ... but can also reveal that the specification was
faulty in the first place, or incomplete

— Code “evolves” and some changing conditions can
trigger buggy behavior

— This isn’t your fault or the client’s fault but finger
pointing is common
* Great testing dramatically reduces bug rates
— And can make fixing bugs way easier

— But can’t solve everything: Paradise isn’t attainable in
the software industry

Reasons for TDD

* By writing the tests first, we
* test the tests
* design the interface by using it
* ensure the code is testable
* ensure good test coverage

* By looking for the simplest way to make
tests pass,

* the code becomes “as simple as possible, but no
simpler”
* may be simpler than you thought!

Not the Whole Story

* There’s a lot more worth knowing about TDD
* What to test / not to test
» e.g.: external libraries?
* How to refactor tests
* Fixtures
* Mock Objects
* Crash Test Dummies

%* Beck, Kent: Test-Driven Development: By Example

How people big really big programs

When applications are small, you can understand
every element of the system

But as systems get very large and complex, you
increasingly need to think in terms of interfaces,
documentation that defines how modules work,
and your code is more fragmented

This forces you into a more experimental style

15/06/2011

Testing is a part of that style!

Once you no longer know how big parts of the
system even work (or if they work), you instead
begin to think in terms of

— Code you've written yourself. You tested it and know
that it works!

— Modules you make use of. You wrote experiments to
confirm that they work the way you need them to
work

— Tests of the entire complete system, to detect issues
visible only when the whole thing is running or only
under heavy load

Junit testing isn’t enough

For example, many systems suffer from “leaks”
— Such as adding more and more objects to an ArrayList
— The amount of memory just grows and grows

Some systems have issues triggered only in big
deployments, like cloud computing settings

Sometimes the application “specification” was flawed, and
a correct implementation of the specification will look
erroneous to the end user

But a thorough test plan can reveal all such problems

The Q/A cycle

Real companies have quality assurance teams

They take the code and refuse to listen to all the
long-winded explanations of why it works

Then they do their own, independent, testing

And then they send back the broken code with a long
list of known bugs!

Separating development from Q/A really helps

Why is Q/A a cycle?

Each new revision may fix bugs but could also
break things that were previously working

Moreover, during the lifetime of a complex
application, new features will often be added and
those can also require Q/A

Thus companies think of software as having a very
long “life cycle”. Developing the first version is
only the beginning of a long road!

Even with fantastic Q/A...

The best code written by professionals will still have
some rate of bugs

— They reflect design oversights, or bugs that Q/A somehow
didn’t catch

— Evolutionary change in requirements

— Incompatibilities between modules developed by different
people, or enhancements made by people who didn’t fully
understand the original logic

So never believe that software will be flawless
Our goal in ¢s2110is to do as well as possible
In later CS courses we’ll study “fault tolerance”!

