

Quiz 1 Solution

- What IDE does the CS 2110 Staff recommend using for this class? - (a) Eclipse
- (b) Dr. Java
- (d) Emacs
- 2. Integer num1 = new Integer(2110); Integer num2 = new Integer(2110); System.out.println((num1 == num2) + ", " + (num1.equals(num2)));
What is the output of the previous code?
- (a) "true, true"
- (b) "true, false"
- (d) "fatse, false"

What is the static type of the field above?

- (a) Bird
(b) Object
(c) Parrot
- 4. Which is the correct google group for this class?
- (a) cornell-cs2110
- (b) cornellecs3110-sp11
- (d) cornell-cs2110-sp10

Recursion Overview

- Recursion is a powerful technique for specifying functions, sets, and programs
- Example recursively-defined functions and programs
- factorial
- combinations
- exponentiation (raising to an integer power)
- solution of combinatorial problems (i.e. search)
- Example recursively-defined sets
- grammars
- expressions
- data structures (lists, trees, ...)

The Factorial Function (n !)

- Define: $\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-1) \cdot(\mathrm{n}-2) \cdots 3 \cdot 2 \cdot 1$
- read: "n factorial"
- E.g., 3! = 3•2•1 = 6
- The function int \rightarrow int that gives n ! on input n is called the factorial function
- n ! is the number of permutations of n distinct objects
- There is just one permutation of one object. 1! $=1$
- There are two permutations of two objects: $2!=2$ 1221
- There are six permutations of three objects: $3!=6$ $123 \quad 132 \quad 213 \quad 231 \quad 312 \quad 321$

A Recursive Program

General Approach to Writing Recursive Functions

- Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g., ($n-1$)!) (i.e. recursion)
- Find base case(s) - small values of n for which you can just write down the solution (e.g., $0!=1$)
- Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

Combinations

(a.k.a. Binomial Coefficients)

- How many ways can you choose r items from a set of n distinct elements? $\binom{n}{r}$ " n choose r " $-\binom{5}{2}=$ number of 2-element subsets of $\{A, B, C, D, E\}$
- 2-element subsets containing A: $\binom{4}{1}$ $\{A, B\},\{A, C\},\{A, D\},\{A, E\}$
- 2-element subsets not containing A: $\binom{4}{2}$ $\{B, C\},\{B, D\},\{B, E\},\{C, D\},\{C, E\},\{D, E\}$
- Therefore, $\binom{5}{2}=\binom{4}{1}+\binom{4}{2}$

Combinations

$\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0$
$\binom{n}{n}=1$
$\binom{n}{0}=1$
Can also show that $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
$\binom{0}{0}$
$\binom{1}{0} \quad\binom{1}{1} \quad$ triangle $\quad 1 \quad 1$ $\binom{2}{0}\binom{2}{1} \quad\binom{2}{2} \quad=\quad \begin{array}{lll}1 & 2 & 1\end{array}$ $\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}$

$\begin{array}{llllllll}\binom{4}{0} & \binom{4}{1} & \binom{4}{2} & \binom{4}{3} & \binom{4}{4} & 1 & 4 & 6\end{array}$| 4 |
| :--- |

Binomial Coefficients

- Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial $(x+y)^{n}$

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} y^{n}
$$

Multiple Base Cases

$\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0$
$\binom{n}{n}=1$
$\binom{n}{0}=1$ \qquad Two base cases

- Coming up with right base cases can be tricky!
- General idea:
- Determine argument values for which recursive case does not apply
- Introduce a base case for each one of these

Recursive Program for Combinations
$\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0$
$\binom{n}{n}=1$
$\binom{n}{0}=1$
static int combs (int n, int r) \{ //assume $n>=r>=0$ if $(r=0| | r==n)$ return $1 ; / /$ base cases else return combs $(n-1, r)+$ combs $(n-1, r-1)$;
\}

Positive Integer Powers

- $a^{n}=a \cdot a \cdot a \cdot \cdots a$ (n times)
- Alternate description:
$-a^{0}=1$
$-a^{n+1}=a \cdot a^{n}$
static int power (int a, int n) \{ if ($n=0$) return 1; else return $a *$ power ($a, n-1$);
\}

Smarter Version in Java

- $\mathrm{n}=0: a^{0}=1$
- n nonzero and even: $a^{n}=\left(a^{n / 2}\right)^{2}$
- n nonzero and odd: $a^{n}=a \cdot\left(a^{n / 2}\right)^{2}$
parameters

Implementation of Recursive Methods

- Key idea:
- Use a stack to remember parameters and local variables across recursive calls
- Each method invocation gets its own stack frame
- A stack frame contains storage for
- Local variables of method
- Parameters of method
- Return info (return address and return value)
- Perhaps other bookkeeping info

A Smarter Version

- Power computation:
$-a^{0}=1$
- If n is nonzero and even, $\mathrm{an}=\left(\mathrm{a}^{\mathrm{n} / 2}\right)^{2}$
- If n is odd, an =a•($\left.a^{n / 2}\right)^{2}$
- Java note: If x and y are integers, " x / y " returns the integer part of the quotient
- Example:
$-a^{5}=a \cdot\left(a^{5 / 2}\right)^{2}=a \cdot\left(a^{2}\right)^{2}=a \cdot\left(\left(a^{2 / 2}\right)^{2}\right)^{2}=a \cdot\left(a^{2}\right)^{2}$
- Note: this requires 3 multiplications rather than 5!
- What if n were larger?
- Savings would be more significant
- Straightforward computation: n multiplications
- Smarter computation: $\log (\mathrm{n})$ multiplications

[^0]```
static int power(int a, int n)
 if (}\textrm{n}==0\mathrm{) return 1;
 int halfPower = power(a,n/2);
 if (n%2 == 0) return halfPower*halfPower;
 return halfPower*halfPower*a;
 }
```



## How Do We Keep Track?

- At any point in execution, many invocations of power may be in existence
- Many stack frames (all for
power) may be in Stack
- Thus there may be several different versions of the variables $a$ and $n$
- How does processor know which location is relevant at a given point in the computation?
$\rightarrow$ Frame Base Register
- When a method is invoked, a frame is created for that method invocation, and FBR is set to point to that frame
- When the invocation returns, FBR is restored to what it was before the invocation
- How does machine know what value to restore in the FBR?
- This is part of the return info in the stack frame



## Problem Solving by Search

- Idea: Try all possible sequences of moves
- Pseudocode:
- DepthFirstSearch(state)

IF isSolution(state) THEN RETURN(true)
WHILE hasNextLegalMove(state) next= getNextLegalMove(state) IF DepthFirstSearch(next) THEN RETURN(true)


RETURN(false)

- Caution: You might get a program that does not terminate, if you have
- move sequences that can be infinitely long
- move sequences that get you back to the same state (cycles)


## Conclusion

- Recursion is a convenient and powerful way to define functions
- Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:
- Reduce a big problem to smaller problems of the same kind, solve the smaller problems
- Recombine the solutions to smaller problems to form solution for big problem
- Important application: parsing


[^0]:    - The method has two parameters and a local variable
    -Why aren't these overwritten on recursive calls?

