
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 5: Recursion

Quiz 1 Solution
• What IDE does the CS 2110 Staff recommend using for this class?

– (a) Eclipse
– (b) Dr. Java
– (c) NetBeans
– (d) Emacs

• 2. Integer num1 = new Integer(2110); Integer num2 = new Integer(2110);
System.out.println((num1 == num2) + ", " + (num1.equals(num2)));
What is the output of the previous code?
– (a) "true, true"
– (b) "true, false"
– (c) "false, true"
– (d) "false, false"

• 3. Animal parrot = new Bird();
What is the static type of the field above?
– (a) Bird
– (b) Object
– (c) Parrot
– (d) Animal

• 4. Which is the correct google group for this class?
– (a) cornell-cs2110
– (b) cornell-cs3110-sp11
– (c) cornell-cs2110-sp11
– (d) cornell-cs2110-sp10 2

Recursion Overview

• Recursion is a powerful technique for specifying functions, sets, and
programs

• Example recursively-defined functions and programs
– factorial
– combinations
– exponentiation (raising to an integer power)
– solution of combinatorial problems (i.e. search)

• Example recursively-defined sets
– grammars
– expressions
– data structures (lists, trees, ...)

3

The Factorial Function (n!)
• Define: n! = n·(n 1)·(n 2)···3·2·1

– read: “n factorial”
– E.g., 3! = 3·2·1 = 6

• The function int int that gives n! on input n
is called the factorial function

• n! is the number of permutations of n distinct
objects
– There is just one permutation of one object. 1! = 1
– There are two permutations of two objects: 2! = 2

1 2 2 1

– There are six permutations of three objects: 3! = 6
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

4

5

Permutations of
Permutations of non-
orange blocks

Each permutation of the three non-orange
blocks gives four permutations when the
orange block is included

Total number = 4·6 = 24 = 4!
 General:
• 0! = 1 (by convention)
• If n > 0, n! = n·(n-1)!

A Recursive Program

6

static int fact(int n) {

if (n = = 0) return 1;

else return n*fact(n-1);

}

Recursive definition of n!

• 0! = 1

• n! = n·(n 1)!, n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24

6/15/2011

2

General Approach to Writing
Recursive Functions

• Try to find a parameter, say n, such that the solution for
n can be obtained by combining solutions to the same
problem using smaller values of n (e.g., (n-1)!)
(i.e. recursion)

• Find base case(s) – small values of n for which you can
just write down the solution (e.g., 0! = 1)

• Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit one of
the base cases

7

The Fibonacci Function
• Mathematical definition:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n 1) + fib(n 2), n ≥ 2

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, …

8

static int fib(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);

}

two base cases!

Fibonacci (Leonardo Pisano)
1170-1240?

Statue in Pisa, Italy, Giovanni
Paganucci, 1863

Recursive Execution

9

static int fib(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);

}

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

Combinations
(a.k.a. Binomial Coefficients)

• How many ways can you choose r items from
a set of n distinct elements? “n choose r”

– = number of 2-element subsets of {A,B,C,D,E}

• 2-element subsets containing A:
{A,B}, {A,C}, {A,D}, {A,E}

• 2-element subsets not containing A:
{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

• Therefore, = +

10

()
4
1 ()

4
2()

5
2

()n
r

()5
2

()4
1

()4
2

Combinations

11

= + , n > r > 0

= 1

= 1

()
n
r ()

n 1
r ()

n 1
r 1

()
n
n

()
n
0

()
0
0

()
1
1()

1
0

()
2
2()

2
1()

2
0

()
3
3()

3
2()

3
1()

3
0

()
4
4()

4
3()

4
2()

4
1()

4
0

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

=

Pascal’s

triangle

Can also show that =()n
r

n!

r!(n r)!

Binomial Coefficients

• Combinations are also called binomial coefficients
because they appear as coefficients in the expansion
of the binomial (x+y)n

12
12

(x + y)n = xn + xn 1y + xn 2y2 + ··· + yn()
n
n()

n
0 ()

n
1 ()

n
2

6/15/2011

3

Multiple Base Cases

• Coming up with right base cases can be tricky!

• General idea:

– Determine argument values for which recursive
case does not apply

– Introduce a base case for each one of these
13

Two base cases

= + , n > r > 0

= 1

= 1

()
n
r ()

n 1
r ()

n 1
r 1

()
n
n

()
n
0

Recursive Program for Combinations

14

static int combs(int n, int r) { //assume n>=r>=0

if (r == 0 || r == n) return 1; //base cases

else return combs(n-1,r) + combs(n-1,r-1);

}

= + , n > r > 0

= 1

= 1

()
n
r ()

n 1
r ()

n 1
r 1

()
n
n

()
n
0

Positive Integer Powers

• an = a·a·a···a (n times)

• Alternate description:

– a0 = 1

– an+1 = a·an

15

static int power(int a, int n) {

if (n == 0) return 1;

else return a*power(a,n-1);

}

A Smarter Version

• Power computation:
– a0 = 1
– If n is nonzero and even, an = (an/2)2

– If n is odd, an = a·(an/2)2

• Java note: If x and y are integers, “x/y” returns the integer part of the quotient

• Example:
– a5 = a·(a5/2)2 = a·(a2)2 = a·((a2/2)2)2 = a·(a2)2

– Note: this requires 3 multiplications rather than 5!

• What if n were larger?
– Savings would be more significant
– Straightforward computation: n multiplications
– Smarter computation: log(n) multiplications

16

Smarter Version in Java

• n = 0: a0 = 1
• n nonzero and even: an = (an/2)2

• n nonzero and odd: an = a·(an/2)2

17

static int power(int a, int n) {

if (n == 0) return 1;

int halfPower = power(a,n/2);

if (n%2 == 0) return halfPower*halfPower;

return halfPower*halfPower*a;

}

parameters
local variable

 The method has two parameters and a local variable

Why aren’t these overwritten on recursive calls?

Implementation of Recursive Methods

• Key idea:
– Use a stack to remember parameters and local

variables across recursive calls

– Each method invocation gets its own stack frame

• A stack frame contains storage for
– Local variables of method

– Parameters of method

– Return info (return address and return value)

– Perhaps other bookkeeping info

18

6/15/2011

4

Stacks

• Like a stack of plates

• You can push data on top or
pop data off the top in a LIFO
(last-in-first-out) fashion

• A queue is similar, except it is
FIFO (first-in-first-out)

19

top element

2nd element

3rd element

...

bottom

element

...

top-of-stack

pointer

stack grows

Stack Frame

• A new stack frame is
pushed with each
recursive call

• The stack frame is
popped when the
method returns
Leaving a return

value (if there is
one) on top of the
stack

20

a stack frame

return info

local variables

parameters

Example: power(2, 5)

21

return info

(a =) 2

(n =) 5

(hP =) ?

return info

(a =) 2

(n =) 5

(hP =) ?

return info

(a =) 2

(n =) 2

(hP =) ?

return info

(a =) 2

(n =) 5

(hP =) ?

return info

(a =) 2

(n =) 2

(hP =) ?

return info

(a =) 2

(n =) 1

(hP =) ?

return info

(a =) 2

(n =) 5

(hP =) 4

return info

(a =) 2

(n =) 5

(hP =) ?

return info

(a =) 2

(n =) 2

(hP =) 2

return info

(a =) 2

(n =) 5

(hP =) ?

return info

(a =) 2

(n =) 2

(hP =) ?

return info

(a =) 2

(n =) 1

(hP =) 1

(retval =) 1

(retval =) 2

(retval =) 4

(retval =) 32

static int power(int a, int n) {

if (n == 0) return 1;

int hP = power(a,n/2);

if (n%2 == 0) return hP*hP;

return hP*hP*a;

}

return info

(a =) 2

(n =) 5

(hP =) ?

return info

(a =) 2

(n =) 2

(hP =) ?

return info

(a =) 2

(n =) 1

(hP =) ?

return info

(a =) 2

(n =) 0

(hP =) ?

How Do We Keep Track?
• At any point in execution,

many invocations of power
may be in existence

– Many stack frames (all for
power) may be in Stack

– Thus there may be several
different versions of the
variables a and n

22

 How does processor know which
location is relevant at a given
point in the computation?
 Frame Base Register

 When a method is invoked, a
frame is created for that method
invocation, and FBR is set to
point to that frame

 When the invocation returns,
FBR is restored to what it was
before the invocation

 How does machine know what
value to restore in the FBR?

 This is part of the return info in
the stack frame

FBR

• Computational activity takes place
only in the topmost (most recently
pushed) stack frame

23

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 1

(hP =) ?

FBR FBR FBR

old FBR

old FBR

old FBR

old FBRold FBR old FBR

Problem Solving by Search

• Idea: Try all possible sequences of moves
• Pseudocode:

– DepthFirstSearch(state)
IF isSolution(state) THEN

RETURN(true)
WHILE hasNextLegalMove(state)

next= getNextLegalMove(state)
IF DepthFirstSearch(next) THEN

RETURN(true)
RETURN(false)

• Caution: You might get a program that does not terminate,
if you have
– move sequences that can be infinitely long
– move sequences that get you back to the same state (cycles)

24

3 2 5
4 8

7 1 6

3 2 5
7 4 8

1 6

3 2 5
4 8
7 1 6

2 5
3 4 8
7 1 6

6/15/2011

5

Conclusion

• Recursion is a convenient and powerful way to
define functions

• Problems that seem insurmountable can often be
solved in a “divide-and-conquer” fashion:
– Reduce a big problem to smaller problems of the

same kind, solve the smaller problems
– Recombine the solutions to smaller problems to form

solution for big problem

• Important application: parsing

25

