6/15/2011

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011
Thorsten Joachims

Lecture 4: Interfaces and Types

Interfaces

* What is an interface?

— Informally, it is a specification of how an agent
interacts with the outside world

* Java has a construct called Interface
which is used formally for this purpose

—an Interface describes how a class interacts
with its clients

— method names, argument/return types, fields

class IntPuzzle implements IPuzzle {

}

Java interface

interface IPuzzle {
void scramble() ;
int tile(int r, int c);

boolean move (char d); e 3 class imp|ements
this interface by
implementing
publicinstance

* name of interface:
IPuzzle

}

public void scramble() {...}

public int tile(int r, int c) {...} methc?ds .aS
public boolean move(char d) {...} SpeCIerd in the
interface

* the class may
implement other
methods

Notes

* Aninterface is not a class!

— cannot be instantiated
— incomplete specification

* Class header must assert

implements I

for Java to recognize that the class implements
interface T

* Aclass may implement several interfaces:

— class X implements Ipod, Ipad {...}

Why an interface construct?

* Good software engineering

— specify and enforce boundaries between different
parts of a team project

* Can use interface as a type
— allows more generic code
— reduces code duplication

* Examples
Map<String, Command> h
= new HashMap<String, Command>();

List<Object> t = new ArrayList<Object>();

Set<Integer> s = new HashSet<Integer>() ;

Example of code duplication

* Suppose we have two implementations of

puzzles:
— class IntPuzzle uses an int to hold state
— class ArrayPuzzle uses an array to hold state

* Say the client wants to use both implementations

— perhaps for benchmarking both implementations to
pick the best one

— client code has a display method to print out puzzles

* What would the display method look like?




6/15/2011

class Client{
IntPuzzle pl = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
...display(pl) ...display(p2)...

public static void display (IntPuzzle p) {
for (int r = 0; r < 3; r++)
for (int ¢ = 0; c < 3; c++)
System.out.println(p.tile(r,c));

Code duplicated
because
IntPuzzle
and
ArrayPuzzle
are different

}

public static void display (ArrayPuzzle p) {
for (int r = 0; r < 3; r++)
for (int ¢ = 0; c < 3; c++)
System.out.println(p.tile(r,c));

Observation

* Two display methods are needed because
IntPuzzle and ArrayPuzzle are different
types, and parameter p must be one or the other

* But the code inside the two methods is identical!

— code relies only on the assumption that the object p
has an instance method tile (int,int)

* Is there a way to avoid this code duplication?

One Solution — Abstract Classes

abstract class Puzzle {
abstract int tile(int r, int c);

}
class IntPuzzle extends Puzzle {
Puzzle public int tile(int r, int c) {...}
code
}
class ArrayPuzzle extends Puzzle {
public int tile(int r, int c¢) {...}

}

public static void display(Puzzle p){
Client for (int r = 0; r < 3; r++4)
for (int ¢ = 0; c < 3; c++)
System.out.println(p.tile(zr,c));

code

Another Solution — Interfaces

interface IPuzzle {
int tile(int r, int c);

}
class IntPuzzle implements IPuzzle {
Puzzle public int tile(int r, int c¢) {...}
code
}
class ArrayPuzzle implements IPuzzle {
public int tile(int r, int c) {...}

}

public static void display (IPuzzle p) {
Client for (int r = 0; r < 3; r++)
for (int ¢ = 0; c < 3; c++)
System.out.println(p.tile(r,c));

code

Interfaces and Types

ArrayPuzzle

* Interface names can be used in type declarations
— IPuzzle p1, p2;

* When a class implements an interface:

— IntPuzzle and ArrayPuzzle are subtypes of
IPuzzle

— IPuzzleisasupertype of IntPuzzle and
ArrayPuzzle

Multiple “Inheritance”

Interfaces @ @ @
Classes @ ‘@

* Unlike classes, types do not form a tree!

— a class may implement several interfaces.

— an interface may be implemented by several
classes.




Extending a Class
Vs
Implementing an Interface

* Aclass can
— implement many interfaces, but
— extend only one class

* To share code between two classes
— put shared code in a common superclass
— interfaces cannot contain code

Subinterfaces

* Suppose you want to extend the interface to
include more methods

— IPuzzle: scramble, move, tile

- ImprovedPuzzle: scramble, move, tile,
hint

* Two approaches
— start from scratch and write an interface
— extend the IPuzzle interface

interface IPuzzle {
void scramble () ;
int tile(int r, int c);
boolean move (char d);

}

interface ImprovedPuzzle extends IPuzzle ({
void hint();
}
* Example:
» IPuzzle is a superinterface of ImprovedPuzzle

» ImprovedPuzzle is a subinterface of IPuzzle Interfaces Classes
» ImprovedPuzzle is a subtype of Ipuzzle
« An interface can extend multiple superinterfaces interface C extends A,B {...}
« A class that implements an interface must implement all class F extends D implements A {...}
methods declared in all superinterfaces class E extends D implements A,B {...}
Static vs Dynamic Types Example

* Every variable (more generally, every expression
that denotes some kind of data) has a static* or
compile-time type
— derived from declarations — you can see it
— known at compile time, without running the program
— does not change

* Every object has a dynamic or runtime type
— obtained when the object is created using new
— not known at compile time — you can’t see it

*Warning! No relation to Java keyword static

int i = 3, j = 4;
Integer x = new Integer (i+3*j-1);
System.out.println(x.toString());

static type of the variables i, j and the expression
i+3*j-1lis int

static type of the variable x and the expression
new Integer (i+3*j-1) is Integer

static type of the expression x. toString () is
String (because toString () is declared in the
class Integer to have return type String)

dynamic type of the object created by the execution
of new Integer (i+3*j-1) iS Integer

6/15/2011




6/15/2011

Reference vs Primitive Types

X
* Reference types
— classes, interfaces, arrays {Integer)

— e.g.: Integer int value: 13
String toString()

* Primitive types
— int, long, short, byte, boolean, char, float, double

Why Both int and Integer?

* Some data structures work only with reference types
(Hashtable, Vector, Stack, ...)

* Primitive types are more efficient
for (int i = 0; i < n; i++) {...}

Upcasting and Downcasting

« Applies to reference types only
* Used to assign the value of an expression of one (static)
type to a variable of another (static) type
— upcasting: subtype = supertype
— downcasting: supertype = subtype

e Acrucial invariant:

Upcasting

* Example of upcasting:
Object x = new Integer (13);

— static type of expression on rhs is Integer
— static type of variable x on |hs is Object
- Integer is a subtype of Object, so this is an upcast

* static type of expression on rhs must be a subtype of
static type of variable on lhs — compiler checks this

upcasting is always type correct — preserves the invariant
automatically

Downcasting

* Example of downcasting:
Integer x = (Integer)y;

— static type of y is Object (say)
— static type of x is Integer
— static type of expression (Integer)y is Integer
— Integer is a subtype of Object, so this is a downcast
* Inany downcast, dynamic type of object must be a subtype
of static type of cast expression
runtime check, ClassCastException if failure
needed to maintain invariant (and only time it is needed)

Is the Runtime Check Necessary?

* Yes, because dynamic type of object may not
be known at compile time
void bar () {
foo (new -Integexr{(13)) ;
} String(“x”)

void foo (Object y) {
int z = ((Integer)y).intValue();




Upcasting with Interfaces

* Java allows up-casting for types from interfaces:
IPuzzle pl = new ArrayPuzzle();
IPuzzle p2 = new IntPuzzle();

 Static types of right-hand side expressions are
ArrayPuzzle and IntPuzzle, resp.

Static type of left-hand side variables is IPuzzle

rhs static types are subtypes of |hs static type, so this is ok

Why Upcasting?

* Subtypingand upcasting can be used to avoid code
duplication

¢ Puzzle example: you and client agree on interface
IPuzzle

interface IPuzzle {
void scramble() ;
int tile(int r, int c);
boolean move (char d) ;

}

Solution

interface IPuzzle {
int tile(int r, int c);

}
class IntPuzzle implements IPuzzle {
Puzzle public int tile(int r, int c) {...}
code
}
class ArrayPuzzle implements IPuzzle {
public int tile(int r, int c¢) {...}

}

public static void display(IPuzzle p){
Client for (int r = 0; r < 3; r++4)
code for (int ¢ = 0; c < 3; c++)
System.out.println(p.tile(zr,c));

Method Dispatch

public static void display(IPuzzle p) {
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)
System.out.println(p.tile(row,col));

* Which tile method is invoked?
— depends on dynamic type of object p (IntPuzzle or
ArrayPuzzle)
— we don't know what it is, but whatever it is, we know it
has a tile method (since any class that implements
IPuzzle must have a tile method)

Method Dispatch

public static void display(IPuzzle p) {
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)
System.out.println(p.tile(row,col)) ;

» Compile-time check: does the static type of p
(namely IPuzzle) have a tile method with
the right type signature? If not = compile error

* Runtime: go to object that is the value of p, find
its dynamic type, look up its tile method

* The compile-time check guarantees that an
appropriate tile method exists!

Note on Casting

* Up- and downcasting merely allow the
object to be viewed at compile time as a
different static type

* Important: when you do a cast, either up or
down, nothing changes

— not the dynamic type of the object
— not the static type of the expression

6/15/2011




6/15/2011

Another Use of Upcasting

* Heterogeneous Data Structures

* Example:
IPuzzle[] pzls = new IPuzzle[9];
pPzls[0] = new IntPuzzle();
pPzls[1l] = new ArrayPuzzle();

e expression pzls[i] is of type IPuzzle

* objects created on right hand sides are of
subtypes of IPuzzle

Java instanceof

Example:
if (p instanceof IntPuzzle) {...}

true if dynamic type of p is a subtype of
IntPuzzle

usually used to check if a downcast will succeed

Example

* suppose twist is a method implemented
onlyin IntPuzzle

void twist (IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++) {
if (pzls[i] instanceof IntPuzzle) {
IntPuzzle p = (IntPuzzle)pzls[i];
p.twist();
}
}
}

Avoid Useless Downcasting

void moveAll (IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++) {
b d if (pzls[i] instanceof IntPuzzle)
a ((IntPuzzle)pzls[i]) .move ("N") ;
else ((ArrayPuzzle)pzls[i]) .move("N");
}
}

void moveAll (IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++)

gOOd pzls[i].move ("N") ;
}

Conclusion

* Interfaces have two main uses
—software engineering: good fences make good neighbors
—subtyping
* Subtyping is a central idea in modern programming
languages

—inheritance and interfaces are two methods for creating
subtype relationships




