
15/06/2011

1

CS/ENGRD 2110
Object-Oriented Programming 

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 3: Objects and Encapsulation

In the Beginning…

• Goal: Build a search engine!

• What do we need?

– Robot that crawls all web pages

– A retrieval engine that finds the best matches for a 
query.

– A web server that gets keyword queries from the 
user and presents search results.

 Break problem down into modules.

Modularity

• Examples:
• Tires in a car (standard size, many vendors)

• External keyboard for computer

• Course at Cornell

• ...

• Delegate responsibility for individual modules

How does Java support modularity?

• Classes and Objects

– Contain data

– Contain methods for accessing data

– Inheritance avoids duplication of effort

• Interfaces

– Standardization across multiple classes

• Packages

– Collections of classes and interfaces

Information Hiding

• Modules hide internal design decisions!

• Modules provide a well-defined external 
interface.

class Set {

...

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...

}

Encapsulation

• By hiding code and data behind its interface, 
a class encapsulates its “inner workings”

• Why is that good?
• Lets us change the implementation later without 

invalidating the code that uses the class

class LineSegment {

private Point2D _p1, _p2;

...

public double length() {

return _p1.distance(_p2);

}

}

class LineSegment {

private Point2D _p;

private double _length;

private double _phi;

...

public double length() {

return _length;

}

}



15/06/2011

2

Encapsulation

• Why is that good? (continued)

– Sometimes, we want a few different classes to 
implement some shared functionality

– For example, the “iterator” construct :

• To support iteration, a class simply needs to 
implement the Iterable interface

Iterator it = 

collection.iterator();

while (it.hasNext()) {

Object next = it.next();

doSomething(next);

}

Can be list, 

set, tree, …

Ensures there 

are methods 

.hasNext(), 

.next(),…

Degenerate Interfaces

• Public fields are usually a Bad Thing:

• Anybody can change them; the class has no 
control

class Set {

public int _count = 0;

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...

}

Interfaces vs. Implementations

• This says “I need this specific implementation”:

• This says “I can operate on anything that 
supports the Iterable interface”

• Interfaces represent higher levels of abstraction
(they focus on “what” and leave out the “how”)

public void doSomething(LinkedList items) ...

public void doSomething(Iterable items) ...

Use of encapsulation and interfaces?

• Support of team work and modularity!
– Rebecca agrees to implement web robot

– Tom will implements the ranking algorithm

– Willy is responsible for the user interface

 By agreeing on the interfaces between their 
respective modules, they can all work on the program 
simultaneously

• Can use work of others (later) without having to 
understand internals!
– Faster development of code.

– Use of components that are already well tested.


