
MSNBC Technology Review, June 27, 2002

Why Software is So Bad. . . and What’s Being Done to Fix It

By Charles C. Mann

June 17—It’s one of the oldest jokes on the Internet, endlessly forwarded from e-mailbox to e-
mailbox. A software mogul—usually Bill Gates, but sometimes another—makes a speech. “If the
automobile industry had developed like the software industry,” the mogul proclaims, “we would all
be driving $25 cars that get 1,000 miles to the gallon.” To which an automobile executive retorts,
“Yeah, and if cars were like software, they would crash twice a day for no reason, and when you
called for service, they’d tell you to reinstall the engine.”

The joke encapsulates one of the great puzzles of contemporary technology. In an amazingly
short time, software has become critical to almost every aspect of modern life. From bank vaults
to city stoplights, from telephone networks to DVD players, from automobile air bags to air traffic
control systems, the world around us is regulated by code. Yet much software simply doesn’t
work reliably: ask anyone who has watched a computer screen flush blue, wiping out hours of
effort. All too often, software engineers say, code is bloated, ugly, inefficient and poorly designed;
even when programs do function correctly, users find them too hard to understand. Groaning
beneath the weight of bricklike manuals, bookstore shelves across the nation testify to the perduring
dysfunctionality of software.

“Software’s simply terrible today,” says Watts S. Humphrey, a fellow of Carnegie Mellon Univer-
sity’s Software Engineering Institute who has written several well-known books on software quality.
“And it’s getting worse all the time.” Good software, in Humphrey’s view, “is usable, reliable, de-
fect free, cost effective and maintainable. And software now is none of those things. You can’t take
something out of the box and know it’s going to work.” Over the years, in the view of Edsger W.
Dijkstra, an emeritus computer scientist at the University of Texas at Austin, the average computer
user “has been served so poorly that he expects his system to crash all the time, and we witness a
massive worldwide distribution of bug-ridden software for which we should be deeply ashamed.”

Jim McCarthy is more generous. The founder, with his wife Michele, of a software quality
training company in Woodinville, WA, McCarthy believes that “most software products have the
necessary features to be worth buying and using and adopting.” But, he allows, “only the extreme
usefulness of software lets us tolerate its huge deficiencies.” McCarthy sometimes begins talks at
his school with a PowerPoint presentation. The first slide reads, “Most Software Sucks.”

Getting Worse, Not Better It is difficult to overemphasize the uniqueness of software’s prob-
lems. When automotive engineers discuss the cars on the market, they don’t say that vehicles today
are no better than they were ten or fifteen years ago. The same is true for aeronautical engineers:
nobody claims that Boeing or Airbus makes lousy planes. Nor do electrical engineers complain that
chips and circuitry aren’t improving. As the engineering historian Henry Petroski suggested in his
1992 book The Evolution of Useful Things, continual refinement is the usual rule in technology.
Engineers constantly notice shortcomings in their designs and fix them little by little, a process
Petroski wryly described as “form follows failure.” As a result, products incrementally improve.

Software, alas, seems different. One would expect a 45-million-line program like newest Windows
XP, Microsoft’s operating system, to have a few bugs. And software engineering is a newer discipline
than mechanical or electrical engineering; the first real programs were created only 50 years ago.
But what’s surprising astonishing, in fact—is that many software engineers believe that software

1

quality is not improving. If anything, they say, it’s getting worse. It’s as if the cars Detroit produced
in 2002 were less reliable than those built in 1982.

In the last 15 years alone, software defects have wrecked a satellite launch, delayed an
airport opening for a year, destroyed a Marsmission, killed four Marines in a helicopter
crash, induced a U.S. Navy ship to destroy a civilian airliner, and shut down ambulance
systems in London, leading to as many as 30 deaths.

As software becomes increasingly important, the potential impact of bad code will increase to
match, in the view of Peter G. Neumann, a computer scientist at SRI International, a private R&D
center in Menlo Park, CA. In the last 15 years alone, software defects have wrecked a European
satellite launch, delayed the opening of the hugely expensive Denver airport for a year, destroyed a
NASA Mars mission, killed four marines in a helicopter crash, induced a U.S. Navy ship to destroy
a civilian airliner, and shut down ambulance systems in London, leading to as many as 30 deaths.
And because of our growing dependence on the Net, Neumann says, “We’re much worse off than we
were five years ago. The risks are worse and the defenses are not as good. We’re going backwardsand
that’s a scary thing.”

Some software companies are responding to these criticisms by revamping their procedures;
Microsoft, stung by charges that its products are buggy, is publicly leading the way. Yet problems
with software quality have endured so long, and seem so intractably embedded in software culture,
that some coders are beginning to think the unthinkable. To their own amazement, these people
have found themselves wondering if the real problem with software is that not enough lawyers are
involved.

‘It’s Total Chaos’ Microsoft released Windows XP on Oct. 25, 2001. That same day, in what
may be a record, the company posted 18 megabytes of patches on its Web site: bug fixes, com-
patibility updates, and enhancements. Two patches fixed important security holes. Or rather, one
of them did; the other patch didn’t work. Microsoft advised (and still advises) users to back up
critical files before installing the patches. Buyers of the home version of Windows XP, however,
discovered that the system provided no way to restore these backup files if things went awry. As
Microsoft’s online Knowledge Base blandly explained, the special backup floppy disks created by
Windows XP Home “do not work with Windows XP Home.”

Such slip-ups, critics say, are merely surface lapses signs that the software’s developers were
too rushed or too careless to fix obvious defects. The real problems lie in software’s basic design,
according to R. A. Downes of Radsoft, a software consulting firm. Or rather, its lack of design.
Microsoft’s popular Visual Studio programming software is an example, to Downes’s way of thinking.
Simply placing the cursor over the Visual Studio window, Downes has found, invisibly barrages the
central processing unit with thousands of unnecessary messages, even though the program is not
doing anything. “It’s cataclysmic. . . It’s total chaos,” he complains.

The issue, in the view of Dan Wallach, a computer scientist at Rice University, is not the pointless
churning of the processor—after all, he notes, “processing power is cheap.” Nor is Microsoft software
especially flawed; critics often employ the company’s products as examples more because they are
familiar than because they are unusually bad. Instead, in Wallach’s view, the blooming, buzzing
confusion in Visual Studio and so many other programs betrays how the techniques for writing
software have failed to keep up with the explosive increase in its complexity.

2

Programmers write code in languages such as Java, C and C++, which can be read by human
beings. Specialized programs known as “compilers” transform this code into the strings of ones and
zeroes used by computers. Importantly, compilers refuse to compile code with obvious problems—
they spit out error messages instead. Until the 1970s, compilers sat on large mainframes that were
often booked days or weeks in advance. Not wanting errors to cause delay, coders—who in the early
days tended to be trained as mathematicians or physicists stayed late in their offices exhaustively
checking their work. Writing software was much like writing scientific papers. Rigor, documentation
and peer-review vetting were the custom.

Overwhelmed by Complexity But as computers became widespread, attitudes changed. In-
stead of meticulously planning code, programmers stayed up in caffeinated all-night hacking ses-
sions, constantly bouncing results off the compiler. Again and again, the compiler would spit back
error messages; the programmers would fix the mistakes one by one until the software compiled
properly. “The attitude today is that you can write any sloppy piece of code and the compiler will
run diagnostics,” says SRI’s Neumann. “If it doesn’t spit out an error message, it must be done
correctly, right?”

As programs grew in size and complexity, however, the limits of this “code and fix” approach
became evident. On average, professional coders make 100 to 150 errors in every thousand lines
of code they write, according to a multiyear study of 13,000 programs by Humphrey of Carnegie
Mellon. Using Humphrey’s figures, the business operating system Windows NT 4, with its 16
million lines of code, would thus have been written with about two million mistakes. Most would
have been too small to have any effect, but some—many thousands—would have caused serious
problems.

Naturally, Microsoft exhaustively tested NT 4 before release, but “in almost any phase of tests
you’ll find less than half the defects,” Humphrey says. If Microsoft had gone through four rounds
of testing, an expensive and time-consuming procedure, the company would have found at most 15
out of 16 bugs. “That’s going to leave you with something like five defects per thousand lines of
code,” Humphrey says. “Which is very low”—but the software would still have as many as 80,000
errors.

Software engineers know that their code is often riddled with lacunae, and they have long been
searching for new technologies to prevent them. To manage increasingly distended projects like
Windows, for example, they have developed a variety of techniques, of which perhaps the best
known is component-based design. Just as houses are built with standardized two-by-fours and
electrical fittings, component-based programs are built out of modular, interchangeable elements:
an example is the nearly identical menu bar atop every Windows or Macintosh program. Such
standardized components, according to Wallach, are not only good engineering practice, they are
“the only way you can make something the size of Microsoft Office work at all.” Microsoft, he says,
was an early, aggressive promoter of this approach—“it’s the single best engineering decision they
ever made.”

Inadequate Planning Cited Unfortunately, critics say, the components are often glued to-
gether with no real central planas if contractors tried to erect large structures with no blueprints.
Incredibly, Humphrey says, the design for large software projects is sometimes “nothing but a cou-
ple bubbles on the back of an envelope.” Worse, for marketing reasons companies wire as many
features as possible into new software, counteracting the benefits of modular construction. The

3

most widespread example is Windows itself, which Bill Gates testified in an April session of the
Microsoft antitrust trial simply would not function if customers removed individual components
such as browsers, file managers or e-mail programs. “That’s an incredible claim,” says Neumann.
“It means there’s no structure or architecture or rhyme or reason in the way they’ve built those
systems, other than to make them as bundled as possible, so that if you remove any part it will all
fail.”

The inadequate design in the final products, critics argue, reflects inadequate planning in the
process of creating them. According to a study by the Standish Group, a consulting firm in West
Yarmouth, MA, U.S. commercial software projects are so poorly planned and managed that in
2000 almost a quarter were canceled outright, creating no final product. The canceled projects
cost firms $67 billion; overruns on other projects racked up another $21 billion. But because “code
and fix” leads to such extensive, costly rounds of testing, even successful projects can be wildly
inefficient. Incredibly, software projects often devote 80 percent of their budgets to repairing flaws
they themselves produced—a figure that does not include the even more costly process of furnishing
product support and developing patches for problems found after release.

“System testing goes on for almost half the process,” Humphrey says. And even when “they
finally get it to work, there’s still no design.” In consequence, the software can’t be updated
or improved with any assurance that the updates or improvements won’t introduce major faults.
“That’s the way software is designed and built everywhere—it’s that way in spaceships, for God’s
sake.”

Is Software a Special Case? The potential risks of bad software were grimly illustrated be-
tween 1985 and 1987, when a computer-controlled radiation therapy machine manufactured by the
government-backed Atomic Energy of Canada massively overdosed patients in the United States
and Canada, killing at least three. In an exhaustive examination, Nancy Leveson, now an MIT com-
puter scientist, assigned much of the blame to the manufacturer’s inadequate software-engineering
practices. Because the program used to set radiation intensity was not designed or tested carefully,
simple typing errors triggered lethal blasts.

Despite this tragic experience, similar machines running software made by Multidata Systems
International, of St. Louis, massively overdosed patients in Panama in 2000 and 2001, leading to
eight more deaths. A team from the International Atomic Energy Agency attributed the deaths to
“the entering of data” in a way programmers had not anticipated. As Leveson notes, simple data-
entry errors should not have lethal consequences. So this failure, too, may be due to inadequate
software.

‘It’s like a car manufacturer saying, “This year we’re going to make a rocket ship
instead of a car.” Of course they’ll have problems.’ —Charles H. Connell, former
principal engineer of Lotus Development

Programming experts tend to agree that such disasters are distressingly common. Consider the
Mars Climate Orbiter and the Polar Lander, both destroyed in 1999 by familiar, readily prevented
coding errors. But some argue that software simply cannot be judged, measured and improved
in the same way as other engineering products. “It’s just a fact that there are things that other
engineers can do that we can’t do,” says Shari Pfleeger, a senior researcher at the Rand think tank
in Washington, DC, and author of the 1998 volume Software Engineering: Theory and Practice.

4

If a bridge survives a 500-kilogram weight and a 50,000-kilogram weight, Pfleeger notes, engineers
can assume that it will bear all the values between. With software, she says, “I can’t make that
assumption—I can’t interpolate.”

Moreover, software makers labor under extraordinary demands. Ford and General Motors have
been manufacturing the same product—a four-wheeled box with an internal-combustion engine—for
decades. In consequence, says Charles H. Connell, former principal engineer of Lotus Development
(now part of IBM), they have been able to improve their products incrementally. But software
companies are constantly asked to create products—Web browsers in the early 1990s, new cell
phone interfaces today—unlike anything seen before. “It’s like a car manufacturer saying, ‘This
year we’re going to make a rocket ship instead of a car,”’ Connell says. “Of course they’ll have
problems.”

“The classic dilemma in software is that people continually want more and more and more
stuff,” says Nathan Myhrvold, former chief technology officer of Microsoft. Unfortunately, he notes,
the constant demand for novelty means that software is always “in the bleeding-edge phase,” when
products are inherently less reliable. In 1983, he says, Microsoft Word had only 27,000 lines of
code. “Trouble is, it didn’t do very much”—which customers today wouldn’t accept. If Microsoft
had not kept pumping up Word with new features, the product would no longer exist.

“Users are tremendously non-self-aware,” Myhrvold adds. At Microsoft, he says, corporate
customers often demanded that the company simultaneously add new features and stop adding
new features. “Literally, I’ve heard it in a single breath, a single sentence. ‘We’re not sure why we
should upgrade to this new release—it has all this stuff we don’t want—and when are you going
to put in these three things?’ And you say, ‘Whaaat?’” Myhrvold’s sardonic summary: “Software
sucks because users demand it to.”

Higher Standards In January, Bill Gates issued a call to Microsoft employees to make “reliable
and secure” computing their “highest priority.” In what the company billed as one of its most
important initiatives in years, Gates demanded that Microsoft “dramatically reduce” the number
of defects in its products. A month later, the company took the unprecedented step of suspending all
new code writing for almost two months. Instead, it gathered together programmers, a thousand
at a time, for mass training sessions on reliability and security. Using huge screens in a giant
auditorium, company executives displayed embarrassing snippets of flawed code produced by those
in the audience.

Gates’s initiative was apparently inspired by the blast of criticism that engulfed Microsoft in
July 2001 when a buffer overflow—a long-familiar type of error—in its Internet Information Services
Web-server software let the Code Red worm victimize thousands of its corporate clients. (In a buffer
overflow, a program receives more data than expected—as if one filled in the space for a zip code
with a 50-digit number. In a computer, the extra information will spill into adjacent parts of
memory, corrupting or overwriting the data there, unless it is carefully blocked.) Two months later,
the Nimda worm exploited other flaws in the software to attack thousands more machines.

Battered by such experiences, software developers are becoming more attentive to quality. Even
as Gates was rallying his troops, think tanks like the Kestrel Institute, of Palo Alto, CA, were de-
veloping “correct-by-construction” programming tool kits that almost force coders to write reliable
programs (see “First Aid for Faulty Code”). At Microsoft itself, according to Amitabh Srivastava,
head of the firm’s Programmer Productivity Research Center, coders are working with new, “higher-
level” languages like C# that don’t permit certain errors. And in May, Microsoft cofounded the

5

$30 million Sustainable Computing Consortium—based at Carnegie Mellon—with NASA and 16
other firms to promote standardized ways to measure and improve software dependability. Quality
control efforts can pay off handsomely: in helping Lockheed Martin revamp the software in its
C130J aircraft, Praxis Critical Systems, of Bath, England, used such methods to cut development
costs by 80 percent while producing software that passed stringent Federal Aviation Administration
exams with “very few errors.”

Critics welcome calls for excellence like those from Kestrel and Microsoft but argue that they will
come to naught unless commercial software developers abandon many of their ingrained practices.
“The mindset of the industry is to treat quality as secondary,” says Cem Kaner, a computer scientist
and lawyer at the Florida Institute of Technology. Before releasing products, companies routinely
hold “bug deferral meetings” to decide which defects to fix immediately, which to fix later by
forcing customers to download patches or buy upgrades, and which to forget about entirely. “Other
industries get sued when they ignore known defects,” Kaner says. “In software, it’s standard
practice. That’s why you don’t buy version 1.0 of a program.” Exasperatingly, software vendors
deliver buggy, badly designed products with incomprehensible help files and then charge high fees
for the inevitable customer service calls. In this way, amazingly, firms profit from poor engineering
practices.

When engineers inside a software company choose to ignore a serious flaw, there are usually
plenty of reviewers, pundits, hackers and other outsiders who will point it out. This is a good thing;
as Petroski wrote in The Evolution of Useful Things, “a technologically savvy and understanding
public is the best check on errant design.” Unfortunately, companies increasingly try to discourage
such public discussion. The fine print in many software licenses forbids publishing benchmark
tests. When PC Magazine tried in 1999 to run a head-to-head comparison of Oracle and Microsoft
databases, Oracle used the license terms to block it even though the magazine had gone out of its
way to assure a fair test by asking both firms to help it set up their software. To purchase Network
Associates’ popular McAfee VirusScan software, customers must promise not to publish reviews
without prior consent from Network Associates—a condition so onerous that the State of New York
sued the firm in February for creating an “illegal ... restrictive covenant” that “chills free speech.”
(At press time, no trial date had been set.)

Is Litigation the Answer? Even a few members of the software-is-different school believe that
some programming practices must be reformed. “We don’t learn from our mistakes,” says Rand’s
Pfleeger.

‘There is no well-defined mechanism [in the software industry] for investigating failures
and no mechanism for ensuring that people read about them.’ —Shari Pfleeger, senior
researcher, Rand

In 1996, for example, the French Ariane 5 rocket catastrophically failed, exploding just 40
seconds after liftoff on its maiden voyage.

Its $500 million satellite payload was a total loss. According to the subsequent committee
of inquiry, the accident was due to “systematic software design error”—more precisely, a buffer
overflow. In most engineering fields, Pfleeger says, such disasters trigger industrywide reforms, as
the collapse of the World Trade Center seems likely to do for fireproofing in construction. But
in software, “there is no well-defined mechanism for investigating failures and no mechanism for

6

ensuring that people read about them.” If the French coders had been drilled, like other engineers,
in the history of their own discipline, the Ariane fiasco might have been avoided.

One way or another, some computer scientists predict, software culture will change. To the
surprise of many observers, the industry is relatively free of product liability lawsuits. The “I
Love You” virus, for instance, spread largely because Microsoft—against the vehement warnings
of security experts—designed Outlook to run programs in e-mail attachments easily. According to
Computer Economics, a consulting group in Carlsbad, CA, the total cost of this decision was $8.75
billion. “It’s amazing that there wasn’t a blizzard of lawsuits,” Wallach says.

Software firms have been able to avoid product liability litigation partly because software licenses
force customers into arbitration, often on unfavorable terms, and partly because such lawsuits
would be highly technical, which means that plaintiffs would need to hire costly experts to build
their cases. Nonetheless, critics predict, the lawsuits will eventually come. And when the costs of
litigation go up enough, companies will be motivated to bulletproof their code. The downside of
quality enforcement through class action lawsuits, of course, is that groundless litigation can extort
undeserved settlements. But as Wallach says, “it just might be a bad idea whose time has come.”

In fact, a growing number of software engineers believe that computers have become so essential
to daily life that society will eventually be unwilling to keep giving software firms a free legal pass.
“It’s either going to be a big product liability suit, or the government will come in and regulate
the industry,” says Jeffrey Voas, chief scientist of Cigital Labs, a software-testing firm in Dulles,
VA. “Something’s going to give. It won’t be pretty, but once companies have a gun to their head,
they’ll figure out a way to improve their code.”

Copyright c© 2002 Technology Review, Inc. All Rights Reserved.

7

