
PROVING THINGS ABOUT
CONCURRENTCONCURRENT
PROGRAMS

Lecture 23 – CS2110 – Fall 2010

Overview

Last time we looked at techniques for proving
2

Last time we looked at techniques for proving
things about recursive algorithms

We saw that in general, recursion matches with the g ,
notion of an inductive proof

How can one reason about a concurrent
algorithm?

We still want proofs of correctness
Techniques aren’t identical but we do use induction

Safety and Livenessy

When a program uses multiple threads we need
3

When a program uses multiple threads, we need
to worry about many things

Are concurrent memory accesses correctly y y
synchronized?
Do the threads “interfere” with one-another?
Can a deadlock arise?
What if some single thread gets blocked but the
others continue to run?
Could an infinite loop arise in which threads get
stuck running but making no progress?stuck running, but making no progress?

Safety and Livenessy

Leslie Lamport suggested that we think about
4

Leslie Lamport suggested that we think about
the question in terms of safety and liveness

A program is safe if nothing bad happens. The p g g pp
guarantee that concurrently accessed memory
will be locked first is a safety property.

The property is also called mutual exclusion
A program is live if good things eventually
happen The guarantee that all threads get tohappen. The guarantee that all threads get to
make progress is a liveness property

Proper synchronizationp y

Consider a program with multiple threads in it
5

Consider a program with multiple threads in it
Perhaps threads T1 and T2
They share some objectsThey share some objects

First we need to ask if the shared objects areFirst, we need to ask if the shared objects are
thread safe

Every access protected by synchronized() { }Every access protected by synchronized() { … }

Critical section examplep
6

Suppose i=3, j=7 …. same indicies

Thread A: Swap(X[i], Y[j]) Thread B : Swap(X[i], Y[j])

1. tmp = X[i];
2. X[i] = X[j];

4. tmp = X[i];
5. X[i] = X[j];

3. X[j] = tmp; 6. X[j] = tmp;

Two swaps on the same items… so at the end
we should be back where we started, right?g

Critical section examplep
7

Suppose i=3, j=7 …. same indicies

Thread A: Swap(X[i], Y[j]) Thread B : Swap(X[i], Y[j])

1. tmp = X[i];
2. X[i] = X[j];

4. tmp = X[i];
5. X[i] = X[j];

3. X[j] = tmp; 6. X[j] = tmp;

What if thread B runs (entirely) in between the
last two lines of thread A?

Critical section examplep
8

Suppose i=3, j=7 …. same indicies

Thread A: Swap(X[i], Y[j]) Thread B : Swap(X[i], Y[j])

1. tmp = X[i];
2. X[i] = X[j];

4. tmp = X[i];
5. X[i] = X[j];

3. X[j] = tmp; 6. X[j] = tmp;

We end up with X[i] = X[j] and X[j]’s old value is lost!

With other values for i,j and other execution orderings
can lose X[j] or cause other kinds of problems

Hardware needs synchronization too!y

As we saw last week, the hardware itself may
9

As we saw last week, the hardware itself may
malfunction if we omit synchronization!

Modern CPUs sometimes reorder operations to
execute them faster, usually because some slow
event (like fetching something from memory) occurs,
and leaves the CPU with time to killand leaves the CPU with time to kill
So it might look ahead and find some stuff that can
safely be done a bit early

Hardware needs synchronization too!y

Without synchronization locks if a thread
10

Without synchronization locks, if a thread
updates objects the thread itself always sees
the exact updates in the order they were donep y

But other threads on other cores could seeBut other threads on other cores could see
them out of order and could see some updates
but not others

Interleavingsg

Suppose that a program correctly locks all
11

Suppose that a program correctly locks all
accesses to shared objects

Would it now be safe?

Issue that arises involves interleavings

Interleavingsg

Suppose threads A and B are executing
12

Suppose threads A and B are executing

A updates Object X and then B changes XA updates Object X, and then B changes X
Was this order “enforced by the program” or could
it be an accident of thread scheduling?it be an accident of thread scheduling?

Ideally when threads interact we would like toIdeally, when threads interact we would like to
control ordering so that it will be predictable

Determinism

A program is deterministic if it produces the
13

A program is deterministic if it produces the
identical results every time it is run with
identical inputp

This is desirable

A program is non deterministic if the same
inputs sometimes result in different outcomesp

This is confusing and can signal problems

Linearizabilityy

Concept was proposed by Wing and Herlihy
14

Concept was proposed by Wing and Herlihy
Start with your concurrent program
But prove that it behaves just like some non-But prove that it behaves just like some non
concurrent program that does the same operations
in some “linear” order

Idea behind proof: if the effect of two executions is the
same, then we can treat them as equivalent

Program is concurrent yet acts deterministicProgram is concurrent yet acts deterministic

N t ll li i blNot all programs are linearizable

We also worry about Deadlocky

Deadlock occurs if two or more threads are
15

Deadlock occurs if two or more threads are
unable to execute because each is waiting for
the other to do something, and both are g,
blocked

This is typically a buggy situation and hence
we also need to prove that our concurrent p
code can’t deadlock

Deadlock

Recall from last week
16

Recall from last week

Deadlock depends on four conditionsDeadlock depends on four conditions
A wait-for cycle
Locks that are held until the thread finishes whatLocks that are held until the thread finishes what
it wants to do, not released
No preemption of locksp p
Mutual exclusion

Example: Deadlock avoidancep

Suppose that threads acquire locks in some
17

Suppose that threads acquire locks in some
standard order. Thm: deadlock cannot occur!

Slightly oversimplified proof: A deadlock means that
there is some cycle of threads A, B…. T each waiting for
the next to take some action.
Consider thread A and assume A holds lock XConsider thread A and assume A holds lock Xa.

A is waiting on B: A wants a lock Xb and B holds that lock.
Now look at B: it holds Xb and wants Xc.
We eventually get to thread T that holds Xt and wants Xa

But per our rules Xa < Xb < …. Xt < Xa: a contradiction! QED

Notice that this is similar to an inductive argumentNotice that this is similar to an inductive argument

Induction connection?

Base case focuses on two threads A and T
18

Base case focuses on two threads, A and T
A is holding XA and wants XT

T is holding XT and will wait for AT is holding XT and will wait for A
But T is violating policy. So we can’t deadlock
with two threads

Induction case: assume no deadlocks with n-1
threads. Show no deadlocks with n threads.

We won’t write this out in logic, but we could.

Paris traffic circles: Deadlock in action

Paris has a strange rule at some traffic circles:
19

Paris has a strange rule at some traffic circles:
priorité a droite
Traffic circlesTraffic circles
around, say, the
Arc de Triomphep
Roads enter from
the rightg
You must yield to
let them enter

Paris traffic circle: priorité a droitep

An issue at Place d’Etoile and Place Victor Hugo
20

An issue at Place d Etoile and Place Victor Hugo
(rest of France uses priorité a gauche)

Think of cars as threads and “space” as objects
If thread A occupies a space that thread B wishes toIf thread A occupies a space that thread B wishes to
enter, then B waits for A
Under this rule, deadlocks can form!Under this rule, deadlocks can form!

To see this, look for a wait-for cycleTo see this, look for a wait for cycle

Why is priorité a droite a bad rule?y p
21

Arc de Triomphe

French guy

French Traffic

Why is priorité a droite a bad rule?y p
22

Why is priorité a droite a bad rule?y p
23

Ooh la la! Quel
catastrophe!

But why is this specific to priorité a droite?

With priorité a gauche cars already in the
24

With priorité a gauche cars already in the
circle have priority over cars trying to enter
Cars can drive around the circle until each carCars can drive around the circle until each car
gets to its desired exit road and the traffic
drains awayy

In fact can drive around and around if they like
Deadlock can’t arise!

Inductive proof?p

Again, lends itself to an inductive proof
25

g , p
Here’s the key step in graphical form:

Assume we are not yet deadlocked: there is atAssume we are not yet deadlocked: there is at
least one space “X” free on the traffic circle
Red and Green cars both want
to advance into X
Green is on the left, so it wins X
This leaves space behind it

X

As a proofp

Two base cases
26

Two base cases
Traffic circle is “fully populated”.

Then traffic can rotate around circle until cars reach
their exit streets and leave

Traffic circle has at least one gap
Priority-a-gauche ensures that the in-circle traffic will
claim it, not the car contending to enter from right

As a proofp

Inductive case
27

Inductive case
Assumes that “chains” of n-1 cars are deadlock
free
Add one car

If you add it in the circle, it waits for the car in front to
() fmove (which it will, by induction), then follows it

If you add it outside the circle, it can only enter if there
is no contention with any car in the circley

We conclude: the circle itself won’t deadlock!

But are cars happy?ppy
28

A car trying to enter might have bad luck and
wait… forever!

This is called « starvation »

Starvation
29

We say that a thread starves if it can’t execute
A common reason: some thread locks a resourceA common reason: some thread locks a resource
but forgets to unlock it
Not a deadlock because only one thread is stucky

What did this example show?p

We can sometimes prevent deadlock by
30

We can sometimes prevent deadlock by
controlling the “order” that contending threads
grab resourcesg

Priorite a gauche is such a rule.
But this also creates risk of starvation

Ensuring that a system is both deadlock and g y
starvation free requires clever design

Recapp

To prove a concurrent program correct we
31

To prove a concurrent program correct we
need to

Prove that the shared memory is accessed safelyy y
Prove that threads can make useful progress

No deadlocks or livelocks or starvation
Guarantee determinism (optional, but useful)

In practice this is very hard to do because of
the vast number of possible interleavings

Debugging concurrent programsgg g p g

When we add threads to a program or create
32

When we add threads to a program, or create
a threaded program, debugging becomes
more challengingg g

Without threads we think only about the “straight
line” execution of our code
With threads need to think about all the orderings
that can arise as they get scheduled

Bugs in concurrent programsg p g

In addition to regular kinds of bugs they often
33

In addition to regular kinds of bugs they often
have bugs specific to concurrency!

Non-determinism and race conditions
Deadlock, livelock, starvation
Harder to reason about

Bugs in concurrent programsg p g

Bruce Lindsay once suggested that there are
34

Bruce Lindsay once suggested that there are
two kinds of bugs

Bohrbugs are like the Bohr model of the nucleus: g
we can track them down and exterminate them

Most deterministic, non-concurrent programs only
h B h b d thi i d thihave Bohrbugs and this is a good thing

Heisenbugs are hard to pin down: the closer youHeisenbugs are hard to pin down: the closer you
look the more they shift around, like a Heisenberg
model of the atomic nucleus (a “cloud”)()

Bugs in concurrent programsg p g

Concurrent programs often have latent
35

Concurrent programs often have latent
Heisenbugs

Something that happened a while ago was the case
And the thread scheduling order may determine when
you actually see the crash!

Wh ’ thWhere’s the
electron?

Bugs in concurrent programsg p g

Concurrent programs notorious for Heisenbugs
36

Concurrent programs notorious for Heisenbugs
You tend to focus on their eventual effect

But that was the symptom not the cause!But that was the symptom, not the cause!
You work endlessly but aren’t actually even
looking at the thing that caused the problem!g g p

And the debugger might cause the problem to gg g p
shift around

Adding threads to unsafe codeg

Modern fad: Adding threading to a program so
37

Modern fad: Adding threading to a program so
that it can benefit from multicore hardware

Start with a program that was built without p g
threads. Then introduce threads and
synchronization

Ri k l ?If you weren’t the
original designer,
this is a risky way

Risky style?
I am liking concurrency

very much!
this is a risky way
to work!

Our recommendations?

Threads are an unavoidable evil
38

Threads are an unavoidable evil
We need them for performance and responsiveness
But they make it (much) harder to prove things about y () p g
our programs
Must use them cautiously and in very controlled ways

Linearizability can greatly simplify analysis
Use inductive style of proofs to reason about
chains of threads that wait for one-another

