
01/11/2010

1

THREADS AND
CONCURRENCY

Lecture 20 – CS2110 – Fall 2009

Prelim 2 Reminder

Prelim 2
Tuesday 16 Nov, 7:30-9pm
Uris G01 Auditorium
Ten days from today!
Topics: all material up to and including this week's lectures

2

Includes graphs

Exam conflicts
You’ll take the exam early, at 6pm, in the same place

Prelim 2 Topics
3

Asymptotic complexity
Searching and sorting
Basic ADTs

stacks
queues
sets

Know and understand the sorting
algorithms
From lecture
From text (not Shell Sort)
Know the algorithms associated
with the various data structuressets

dictionaries
priority queues

Basic data structures used to
implement these ADTs

arrays
linked lists
hash tables
binary search trees
heaps

with the various data structures
Know BST algorithms, but don’t need
to memorize balanced BST
algorithms
Know the runtime tradeoffs
among data structures
Don’t worry about details of API
But should have basic understanding
of what’s available

Prelim 2 Topics
4

Language features
inheritance
inner classes
anonymous inner classes
types & subtypes

GUI dynamics
events
listeners
adapters

yp yp
iteration & iterators

GUI statics
layout managers
components
containers

Data Structure Runtime
Summary

5

Stack [ops = put & get]
O(1) worst-case time

Array (but can overflow)
Linked list

O(1) time/operation
Array with doubling

Priority Queue [ops = insert &
getMin]
O(1) worst-case time if set of priorities
is bounded
One queue for each priority
O(log n) worst case timeArray with doubling

Queue [ops = put & get]
O(1) worst-case time

Array (but can overflow)
Linked list (need to keep track of
both head & last)

O(1) time/operation
Array with doubling

O(log n) worst-case time
Heap (but can overflow)
O(log n) time/operation
Heap (with doubling)
O(n) worst-case time
Unsorted linked list
Sorted linked list (O(1) for getMin)
Unsorted array (but can overflow)
Sorted array (O(1) for getMin, but can
overflow)

Data Structure Runtime Summary (Cont’d)
6

Set [ops = insert & remove &
contains]

O(1) worst-case time
Bit-vector (can also do union and
intersect in O(1) time)

O(1) expected time

Dictionary [ops = insert(k,v) &
get(k) & remove(k)]
O(1) expected time
Hash table (with doubling & chaining)
O(log n) worst-case time
Balanced BSTO(1) expected time

Hash table (with doubling & chaining)

O(log n) worst-case time
Balanced BST

O(n) worst-case time
Linked list
Unsorted array
Sorted array (O(log n) for contains)

Balanced BST
O(log n) expected time
Unbalanced BST (if data is sufficiently
random)
O(n) worst-case time
Linked list
Unsorted array
Sorted array (O(log n) for contains)

01/11/2010

2

What is a Thread?
7

• A separate process that can perform a
computational task independently and
concurrently with other threads

–Most programs have only one thread
–GUIs have a separate thread, the event

dispatching thread
–A program can have many threads
–You can create new threads in Java

What is a Thread?
8

• On many machines, threads are an illusion
–Not all machines have multiple processors
–But a single processor can share its time among

all the active threadsall the active threads
–Implemented with support from underlying

operating system or virtual machine
–Gives the illusion of several threads running

simultaneously
• But modern computers often have “multicore”

architectures: multiple CPUs on one chip

Why Multicore?
9

Moore’s Law: Computer speeds and memory
densities nearly double each year

But a fast computer runs hot
10

Power dissipation rises as the square of the
CPU clock rate
Chips were heading towards melting down!

Multicore: with four
CPUs (cores) on one chip,
even if we run each at half
speed we get more overall
performance!

Concurrency (aka Multitasking)
11

• Refers to situations in which several
threads are running simultaneously

• Special problems arise
–race conditions
–deadlock

Task Manager
12

• The operating system provides
support for multiple “processes”

• In reality there there may be fewer
processors than processes

• Processes are an illusion too – at theProcesses are an illusion too at the
hardware level, lots of multitasking

– memory subsystem

– video controller

– buses

– instruction prefetching

01/11/2010

3

Threads in Java
13

• Threads are instances of the class Thread
– can create as many as you like

• The Java Virtual Machine permits multiple
t th dconcurrent threads

– initially only one thread (executes main)

• Threads have a priority
– higher priority threads are executed preferentially
– a newly created Thread has initial priority equal to

the thread that created it (but can change)

Creating a new Thread (Method 1)
14

class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a = a; this.b = b;

} overrides
Thread run()

public void run() {
//compute primes between a and b
...

}
}

PrimeThread p = new PrimeThread(143, 195);
p.start();

Thread.run()

can call run() directly –
the calling thread will run it

or, can call start()
– will run run() in new thread

Creating a new Thread (Method 2)
15

class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();

Example
16

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Th d[Th d 0 5 i] 1

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

Thread.currentThread(), i);
}

}

public void run() {
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
17

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Th d[Th d 0 4 i] 1

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

Thread.currentThread(), i);
}

}

public void run() {
currentThread().setPriority(4);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
18

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Th d[Th d 0 6 i] 5

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

Thread.currentThread(), i);
}

}

public void run() {
currentThread().setPriority(6);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

01/11/2010

4

Example
19

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting..."); running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

yield();
}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

allows other waiting
threads to run

Stopping Threads
20

• Threads normally terminate by returning from
their run method

•stop(), interrupt(), suspend(),
destroy(), etc. are all deprecated

– can leave application in an inconsistent state
– inherently unsafe
– don't use them
– instead, set a variable telling the thread to stop itself

Daemon and Normal Threads
21

• A thread can be daemon or normal
– the initial thread (the one that runs main) is normal

• Daemon threads are used for minor or ephemeral
tasks (e.g. timers, sounds)

• A thread is initially a daemon iff its creating thread is
– but this can be changed

• The application halts when either
– System.exit(int) is called, or
– all normal (non-daemon) threads have terminated

Race Conditions
22

• A race condition can arise when two or more
threads try to access data simultaneously

• Thread B may try to read some data while
thread A is updating it

– updating may not be an atomic operation
– thread B may sneak in at the wrong time and read

the data in an inconsistent state

• Results can be unpredictable!

Example – A Lucky Scenario
23

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ® stack is now empty
3. thread B tests stack.isEmpty() true
4. thread B just returns – nothing to do

Example – An Unlucky Scenario
24

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread B tests stack.isEmpty() false
3. thread A pops stack is now empty
4. thread B pops Exception!

01/11/2010

5

Solution – Locking
25

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s = stack.pop();

}
//d thi ith//do something with s...

}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

Solution – Locking
26

public synchronized void doSomething() {
...

}

•You can lock on any object, including this

public void doSomething() {
synchronized (this) {

...
}

}

is equivalent to

File Locking
27

• In file systems, if two or more processes
could access a file simultaneously, this
could result in data corruption

• A process must open a file to use it – givesA process must open a file to use it gives
exclusive access until it is closed

• This is called file locking – enforced by the
operating system

• Same concept as synchronized(obj) in
Java

Deadlock
28

•The downside of locking – deadlock

•A deadlock occurs when two or more
competing threads are waiting for the other
to relinquish a lock so neither ever doesto relinquish a lock, so neither ever does

•Example:
–thread A tries to open file X, then file Y
–thread B tries to open file Y, then file X
–A gets X, B gets Y
–Each is waiting for the other forever

wait/notify
29

•A mechanism for event-driven activation of
threads

•Animation threads and the GUI event-
di t hi th d i i t t idispatching thread in can interact via
wait/notify

wait/notify
30

boolean isRunning = true;

public synchronized void run() {
while (true) {

while (isRunning) {
//do one step of simulation

li i h l k i t

animator:

}
try {

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}

public void restartAnimation() {
synchronized(animator) {

animator.notify();
}

}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

01/11/2010

6

Summary
31

Use of multiple processes and multiple threads within
each process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)
But when using threads, beware!

Must lock (synchronize) any shared memory to avoid nonMust lock (synchronize) any shared memory to avoid non-
determinism and race conditions
Yet synchronization also creates risk of deadlocks
Even with proper locking concurrent programs can have
other problems such as “livelock”

Serious treatment of concurrency is a complex topic
(covered in more detail in cs3410 and cs4410)

