

MORE GRAPHS

Lecture 19
CS2110 - Fall 2010

Representations of Graphs

Adjacency List

Adjacency Matrix

	1	2	3	4
1	0	1	0	1
2	0	0	1	0
3	0	0	0	0
4	0	1	1	0

Adjacency Matrix or Adjacency List?

$\mathrm{n}=$ number of vertices
$\mathrm{m}=$ number of edges
$d(u)=$ outdegree of u
\square Adjacency Matrix

- Uses space $O\left(n^{2}\right)$
-Can iterate over all edges in time $O\left(n^{2}\right)$
םCan answer "Is there an edge from u to v ?" in $\mathrm{O}(1)$ time
aBetter for dense graphs (lots of edges)
- Adjacency List
- Uses space O(m+n)
- Can iterate over all edges in time O(m+n)
- Can answer "Is there an edge from u to v?" in O(d(u)) time
- Better for sparse graphs (fewer edges)

Shortest Paths in Graphs

\square Finding the shortest (min-cost) path in a graph is a problem that occurs often
םFind the shortest route between Ithaca and West Lafayette, IN
-Result depends on our notion of cost

- Least mileage
- Least time
- Cheapest
- Least boring
-All of these "costs" can be represented as edge weights
${ }_{\square}$ How do we find a shortest path?

Dijkstra's Algorithm

```
dijkstra(s) {
    // Note: c(s,t) = cost of the s,t edge if present
    // Integer.MAX_VALUE otherwise
    D[s] = 0; D[t] = c(s,t), t f s;
    mark s;
    while (some vertices are unmarked)
        v = unmarked node with smallest D;
        mark v;
        for (each w adjacent to v) {
            D[w] = min(D[w], D[v] + c(v,w));
        }
    }
}
```


Dijkstra's Algorithm

Proof of Correctness

The following are invariants of the loop:

- X is the set of marked nodes
- For $u \in X, D(u)=d(s, u)$
- For $u \in X$ and $v \notin X, d(s, u) \leq d(s, v)$
- For all $u, D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:

- Use a priority queue for the nodes not yet taken - priority is $\mathrm{D}(\mathrm{u})$

Shortest Paths for Unweighted Graphs - A Special Case

\square Use breadth-first search
\square Time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$ in adj list representation, $O\left(n^{2}\right)$

in adj matrix
representation

Undirected Trees

- An undirected graph is a tree if there is exactly one simple path between any pair of vertices

Facts About Trees

- $|\mathrm{E}|=|\mathrm{V}|-1$
- connected
- no cycles

In fact, any two of these properties imply the third, and imply that the graph

is a tree

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree

- Same set of vertices V
- $\mathrm{E}^{\prime} \subseteq \mathrm{E}$
- $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ is a tree

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between. them - still no cycles (why?)
- Repeat until only one
 component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Useful in network routing \& other applications
- For example, to
 stream a video

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

- When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree

Prim's Algorithm

```
prim(s) {
    D[s] = 0; mark s; //start vertex
    while (some vertices are unmarked) {
            v = unmarked vertex with smallest D;
            mark v;
            for (each w adj to v) {
                D[w] = min(D[w], c(v,w));
            }
    }
}
```

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for adj matrix
- While-loop is executed n times
- For-loop takes O(n) time
$\square \mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$ for adj list
- Use a PQ
\square Regular $P Q$ produces time $O(n+m \log m)$
- Can improve to $O(m+n \log n)$ using a fancier heap

Greedy Algorithms

\square These are examples of Greedy Algorithms
\square The Greedy Strategy is an algorithm design technique

- Like Divide \& Conquer

\square Greedy algorithms are used to solve optimization problems

- The goal is to find the best solution
\square Works when the problem has the greedy-choice property
- A global optimum can be reached by making locally optimum choices
- Example: the Change Making Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
- Give as many large coins as you can
- This greedy strategy produces the optimum number of coins for the US coin system
- Different money system ${ }^{\circledR}$ greedy strategy may fail
- Example: old UK system

Similar Code Structures

- Breadth-first-search (bfs)
-best: next in queue
-update: D[w] = D[v]+1
- Dijkstra's algorithm
-best: next in PQ
- update: $\mathrm{D}[\mathrm{w}]=\min (\mathrm{D}[\mathrm{w}], \mathrm{D}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))$
- Prim's algorithm
-best: next in PQ
-update: $\mathrm{D}[\mathrm{w}]=\min (\mathrm{D}[\mathrm{w}], \mathrm{c}(\mathrm{v}, \mathrm{w})$)

