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MORE GRAPHS
Lecture 19
CS2110 – Fall 2010

Representations of Graphs
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Adjacency List Adjacency Matrix

Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = outdegree of u
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Adjacency Matrix
Uses space O(n2)
Can iterate over all edges in 
time O(n2)
Can answer “Is there an edge 
from u to v?” in O(1) time
Better for dense graphs (lots of 
edges)

• Adjacency List
– Uses space O(m+n)
– Can iterate over all edges in time 

O(m+n)
– Can answer “Is there an edge from 

u to v?” in O(d(u)) time
– Better for sparse graphs (fewer 

edges)

Shortest Paths in Graphs

Finding the shortest (min-cost) path in a graph is a 
problem that occurs often

Find the shortest route between Ithaca and West Lafayette, IN
Result depends on our notion of cost

Least mileage

4

east eage
Least time
Cheapest
Least boring

All of these “costs” can be represented as edge weights

How do we find a shortest path?

Dijkstra’s Algorithm

dijkstra(s) {
// Note: c(s,t) = cost of the s,t edge if present
//                Integer.MAX_VALUE otherwise

D[s] = 0; D[t] = c(s,t), t ≠ s;
mark s;

5

mark s;
while (some vertices are unmarked) {

v = unmarked node with smallest D;
mark v;
for (each w adjacent to v) {

D[w] = min(D[w], D[v] + c(v,w));
}

}
}
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The following are invariants of the loop:
• X is the set of marked nodes
• For u X, D(u) = d(s,u)
• For u X and v X, d(s,u) ≤ d(s,v)

Proof of Correctness
14

, ( , ) ( , )
• For all u, D(u) is the length of the shortest 
path from s to u such that all nodes on the path 
(except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet 
taken – priority is D(u)

Shortest Paths for Unweighted 
Graphs – A Special Case

Use breadth-first search
Time is O(n + m) in adj 
list representation, O(n2) 

15

in adj matrix 
representation
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Undirected Trees

• An undirected graph is a tree if there is 
exactly one simple path between any pair 
of vertices
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Facts About Trees

• |E| = |V| – 1
• connected
• no cycles
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In fact, any two of 
these properties 
imply the third, and 
imply that the graph 
is a tree

Spanning Trees

A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree

18
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Spanning Trees

A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree

19

• Same set of 
vertices V

• E' E

• (V,E') is a tree

Finding a Spanning Tree

A subtractive method

• If there is a cycle pick

• Start with the whole graph – it is connected

20

If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still 
connected (why?)

• Repeat until no more 
cycles

• If there is a cycle pick

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method
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If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still 
connected (why?)

• Repeat until no more 
cycles

• If there is a cycle pick

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method
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If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still 
connected (why?)

• Repeat until no more 
cycles

An additive method

• Start with no edges – there are no cycles

Finding a Spanning Tree
23

• If more than one 
connected component, 
insert an edge between 
them – still no cycles 
(why?)

• Repeat until only one 
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
24

• If more than one 
connected component, 
insert an edge between 
them – still no cycles 
(why?)

• Repeat until only one 
component
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• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
25

• If more than one 
connected component, 
insert an edge between 
them – still no cycles 
(why?)

• Repeat until only one 
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
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• If more than one 
connected component, 
insert an edge between 
them – still no cycles 
(why?)

• Repeat until only one 
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
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• If more than one 
connected component, 
insert an edge between 
them – still no cycles 
(why?)

• Repeat until only one 
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
28

• If more than one 
connected component, 
insert an edge between 
them – still no cycles 
(why?)

• Repeat until only one 
component

Minimum Spanning Trees

• Suppose edges are weighted, and we want a 
spanning tree of minimum cost (sum of edge 
weights)

29

• Some graphs have exactly one minimum 
spanning tree.  Others have multiple trees with 
the same cost, any of which is a minimum 
spanning tree

Minimum Spanning Trees

• Suppose edges are weighted, and we want a 
spanning tree of minimum cost (sum of edge 
weights)
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• Useful in network 
routing & other 
applications

• For example, to 
stream a video

10
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3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it
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3 Greedy Algorithms
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3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it
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3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it
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3 Greedy Algorithms
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle
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Dijkstra's  algorithm)
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3 Greedy Algorithms
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extending that connected component that 
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3 Greedy Algorithms

1

• When edge weights are all distinct, or if there 
is exactly one minimum spanning tree, the 3 
algorithms all find the identical tree
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Prim’s Algorithm
prim(s) {

D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {

v = unmarked vertex with smallest D;
mark v;
for (each w adj to v) {

54

O(m + n log n) for adj list
Use a PQ
Regular PQ produces time O(n + m log m)
Can improve to O(m + n log n) using a
fancier heap

D[w] = min(D[w], c(v,w));
}

}
}

• O(n2) for adj matrix
– While-loop is executed n times
– For-loop takes O(n) time
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Greedy Algorithms

These are examples of Greedy 
Algorithms
The Greedy Strategy is an 
algorithm design technique

Like Divide & Conquer

• Example: the Change Making 
Problem: Given an amount of 
money, find the smallest number of 
coins to make that amount

• Solution: Use a Greedy Algorithm

55

Like Divide & Conquer

Greedy algorithms are used to 
solve optimization problems

The goal is to find the best
solution

Works when the problem has the 
greedy-choice property

A global optimum can be reached 
by making locally optimum 
choices

– Give as many large coins as you can
• This greedy strategy produces the 

optimum number of coins for the 
US coin system

• Different money system ® greedy 
strategy may fail

– Example: old UK system

Similar Code Structures

while (some vertices are
unmarked) {

v = best of unmarked
i

• Breadth-first-search (bfs)
–best: next in queue
–update: D[w] = D[v]+1

• Dijkstra’s algorithm

56

vertices;
mark v;
for (each w adj to v)

update w;
}

Dijkstra s algorithm
–best: next in PQ
–update: D[w] = min(D[w], D[v]+c(v,w))

• Prim’s algorithm
–best: next in PQ
–update: D[w] = min(D[w], c(v,w))


