
01/11/2010

1

1

MORE GRAPHS
Lecture 19
CS2110 – Fall 2010

Representations of Graphs

Adjacenc List Adjacenc Matri

1 2

34

2

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Adjacency List Adjacency Matrix

Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = outdegree of u

3

Adjacency Matrix
Uses space O(n2)
Can iterate over all edges in
time O(n2)
Can answer “Is there an edge
from u to v?” in O(1) time
Better for dense graphs (lots of
edges)

• Adjacency List
– Uses space O(m+n)
– Can iterate over all edges in time

O(m+n)
– Can answer “Is there an edge from

u to v?” in O(d(u)) time
– Better for sparse graphs (fewer

edges)

Shortest Paths in Graphs

Finding the shortest (min-cost) path in a graph is a
problem that occurs often

Find the shortest route between Ithaca and West Lafayette, IN
Result depends on our notion of cost

Least mileage

4

east eage
Least time
Cheapest
Least boring

All of these “costs” can be represented as edge weights

How do we find a shortest path?

Dijkstra’s Algorithm

dijkstra(s) {
// Note: c(s,t) = cost of the s,t edge if present
// Integer.MAX_VALUE otherwise

D[s] = 0; D[t] = c(s,t), t ≠ s;
mark s;

5

mark s;
while (some vertices are unmarked) {

v = unmarked node with smallest D;
mark v;
for (each w adjacent to v) {

D[w] = min(D[w], D[v] + c(v,w));
}

}
}

2.4
1 22.4

0 91 5

X

Dijkstra’s Algorithm
6

1.5
34

0.91.5

3.1

0.1

01/11/2010

2

2.4
1 22.4

0 91 5

X

Dijkstra’s Algorithm
7

1.5
34

0.91.5

3.1

0.1

1.6
1 22.4

0 91 5

X

Dijkstra’s Algorithm
8

1.5
34

0.91.5

3.1

0.1

4.6

1.6
1 22.4

0 91 5

X

Dijkstra’s Algorithm
9

1.5
34

0.91.5

3.1

0.1

4.6

1.6
1 22.4

0 91 5

X

Dijkstra’s Algorithm
10

1.5
34

0.91.5

3.1

0.1

4.6

1.6
1 22.4

0 91 5

X

Dijkstra’s Algorithm
11

1.5
34

0.91.5

3.1

0.1

2.5

1.6
1 22.4

0 91 5

X

Dijkstra’s Algorithm
12

1.5
34

0.91.5

3.1

0.1

2.5

01/11/2010

3

1.6
1 22.4

0 91 5

X

Dijkstra’s Algorithm
13

1.5
34

0.91.5

3.1

0.1

2.5

The following are invariants of the loop:
• X is the set of marked nodes
• For u X, D(u) = d(s,u)
• For u X and v X, d(s,u) ≤ d(s,v)

Proof of Correctness
14

, (,) (,)
• For all u, D(u) is the length of the shortest
path from s to u such that all nodes on the path
(except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet
taken – priority is D(u)

Shortest Paths for Unweighted
Graphs – A Special Case

Use breadth-first search
Time is O(n + m) in adj
list representation, O(n2)

15

in adj matrix
representation

S BA

C D E

F

Undirected Trees

• An undirected graph is a tree if there is
exactly one simple path between any pair
of vertices

16

Facts About Trees

• |E| = |V| – 1
• connected
• no cycles

17

In fact, any two of
these properties
imply the third, and
imply that the graph
is a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

18

01/11/2010

4

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

19

• Same set of
vertices V

• E' E

• (V,E') is a tree

Finding a Spanning Tree

A subtractive method

• If there is a cycle pick

• Start with the whole graph – it is connected

20

If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• If there is a cycle pick

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

21

If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• If there is a cycle pick

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

22

If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

An additive method

• Start with no edges – there are no cycles

Finding a Spanning Tree
23

• If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
24

• If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

• Repeat until only one
component

01/11/2010

5

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
25

• If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
26

• If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
27

• If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree
28

• If more than one
connected component,
insert an edge between
them – still no cycles
(why?)

• Repeat until only one
component

Minimum Spanning Trees

• Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

29

• Some graphs have exactly one minimum
spanning tree. Others have multiple trees with
the same cost, any of which is a minimum
spanning tree

Minimum Spanning Trees

• Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

1

30

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

• Useful in network
routing & other
applications

• For example, to
stream a video

10

14

16

01/11/2010

6

3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

1

31

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

32

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

33

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

34

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

35

33

4

13

9

6
32

40

7

21

15

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

36

4

13

9

6

7

21

15

2

5

22 24

8
25

54

11

12

3

10

14

16

01/11/2010

7

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

37

4

13

9

6

7

15

2

5
8

25

54

11

12

3

10

14

16

3 Greedy Algorithms

1

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

38

14

4

9

6

7

2

5
8

25

54

11

12

10
16

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

39

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

14

16

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

40

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

14

16

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

41

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

14

16

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

42

33

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

14

16

01/11/2010

8

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

43

33

14

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

16

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

44

33

14

4

13

9

6
32

40

7

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

16

3 Greedy Algorithms

1

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

45

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Kruskal's
algorithm

3 Greedy Algorithms

1

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

46

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

1

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

47

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

1

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

48

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

01/11/2010

9

3 Greedy Algorithms

1

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

49

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

1

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

50

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

1

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

51

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

1

52

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

33

14

4

13

9

6
32

40

7

16

21

15

100

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

3 Greedy Algorithms

1

• When edge weights are all distinct, or if there
is exactly one minimum spanning tree, the 3
algorithms all find the identical tree

53

14

4

9

6

7

2

5
8

25

54

11

12

10
16

Prim’s Algorithm
prim(s) {

D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {

v = unmarked vertex with smallest D;
mark v;
for (each w adj to v) {

54

O(m + n log n) for adj list
Use a PQ
Regular PQ produces time O(n + m log m)
Can improve to O(m + n log n) using a
fancier heap

D[w] = min(D[w], c(v,w));
}

}
}

• O(n2) for adj matrix
– While-loop is executed n times
– For-loop takes O(n) time

01/11/2010

10

Greedy Algorithms

These are examples of Greedy
Algorithms
The Greedy Strategy is an
algorithm design technique

Like Divide & Conquer

• Example: the Change Making
Problem: Given an amount of
money, find the smallest number of
coins to make that amount

• Solution: Use a Greedy Algorithm

55

Like Divide & Conquer

Greedy algorithms are used to
solve optimization problems

The goal is to find the best
solution

Works when the problem has the
greedy-choice property

A global optimum can be reached
by making locally optimum
choices

– Give as many large coins as you can
• This greedy strategy produces the

optimum number of coins for the
US coin system

• Different money system ® greedy
strategy may fail

– Example: old UK system

Similar Code Structures

while (some vertices are
unmarked) {

v = best of unmarked
i

• Breadth-first-search (bfs)
–best: next in queue
–update: D[w] = D[v]+1

• Dijkstra’s algorithm

56

vertices;
mark v;
for (each w adj to v)

update w;
}

Dijkstra s algorithm
–best: next in PQ
–update: D[w] = min(D[w], D[v]+c(v,w))

• Prim’s algorithm
–best: next in PQ
–update: D[w] = min(D[w], c(v,w))

