copyright ©@2005 UC Regents. all rights reserved.

AS-level INTERNET

Peering:
OutDegree

— 1659

London, UK

[Zo1(uuntT)
233 G htti)
I7v15aT8T)

Dublin, 1f;
Alges, py-

GRAPHS

Lecture 18
CS2110 — Fall 2010

Announcements

Prelim 2: Two and a half weeks from now
Tuesday, Nov 16, 7:30-9pm, Uris GO1

Exam conflicts?
Same deal: just take our exam from 6:00-7:30

Old exams available on the course website

The Fall 2009 exam is closest to what we’ll use

These are not Graphs

90.00

7188
" East
53.75 ! West
B Nerth
35.63
17.50

1st Qtr2nd Qtr3rd Qtréth Qtr

| AW VL]
1 \/ j \/ I

...not the kind we mean, anyway

These are Graphs

Applications of Graphs

Communication networks

Routing and shortest path problems
Commodity distribution (flow)
Traffic control

Resource allocation

Geometric modeling

Graph Definitions

A (or) is a pair (V, E)
where
V is a set

E is a set of ordered pairs (u,v) where u,vaV
Usually require u v (i.e., no self-loops)

An element of V is called a (pl.
or
An element of E is called an or

|V| = size of V, often denoted
|IE| = size of E, often denoted

Example Directed Graph (Digraph)

V ={a,b,c,d,e,f}
E ={(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),
(c.§), (d,e), (d.,1), (e,f)}

V| =6, |E| = 11

Example Undirected Graph

An IS just like a directed graph,
except the edges are () {u,v}
Example:

V ={a,b,c,d,e,f} e
E = {{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c.f},

{d.e}, {d.f}, {e,f}}

Some Graph Terminology

Vertices u and v are called the and of the directed
edge (u,v), respectively
Vertices u and v are called the of (u,v)
Two vertices are if they are connected by an edge
The of a vertex u in a directed graph is the number of
edges for which u is the source
The of a vertex v in a directed graph is the number of
edges for which v is the sink
The of a vertex u in an undirected graph is the number
of edges of which u is an endpoint
b b
d d
C
A
S of f

More Graph Terminology
voo\/o\.o/o”dw

A IS @ sequence V,,Vq,Vs,...,V, Of vertices
such that (v,v.,) EE,0<i<p—1

The Is its number of edges
In this example, the length is 5

A path is if it does not repeat any
vertices

A IS a path VsV1:VoseeVp such that v, = Vp
Acycle is if it does not repeat any

vertices except the first and last — od
A graph is if it has no cycles @%
A directed acyclic graph is called a o

Is This a Dag?

Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

%
of

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

%
of

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

/\

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

/)

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

Oe/V
Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?

Intuition:
If it's a dag, there must be a vertex with indegree
zero — why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Topological Sort

We just computed a of the dag

This is a numbering of the vertices such that all
edges go from lower- to higher-numbered vertices

Useful in job scheduling with precedence
constraints

Graph Coloring

A of an undirected graph is an
assignment of a color to each node such
that no two adjacent vertices get the same

color @

o How many colors are needed to color this
graph??

Graph Coloring

A of an undirected graph is an
assignment of a color to each node such
that no two adjacent vertices get the same

color @

o How many colors are needed to color this
graph?

An Application of Coloring

Vertices are jobs

Edge (u,v) is present if jobs u and v each
require access to the same shared
resource, and thus cannot execute
simultaneously

Colors are time slots to schedule the jobs
Minimum number of colors needed to color

the graph = mik¥ umber of time slots
required

Planarity

A graphis If it can be embedded in
the plane with no edges crossing

XA

o Is this graph planar?

Planarity

A graphis If it can be embedded in
the plane with no edges crossing

A

o Is this graph planar?
Yes

Planarity

o Agraph is If it can be embedded in
the plane with no edges crossing

o Is this graph planar?
Yes

Detecting Planarity

Kuratowski's Theorem

A graph is planar if and only if it does not
contain a copy of K5 or K; 5 (possibly with
other nodes along the edges shown)

The Four-Color Theorem

Every planar graph

IS 4-colorable
(Appel & Haken, 1976)

Bipartite Graphs

A directed or undirected graph is

If the vertices can be partitioned
into two sets such that all edges go
between the two sets

Bipartite Graphs

The following are equivalent
G is bipartite
G Is 2-colorable
G has no cycles of odd length

Traveling Salesperson

Ilthaca

o Find a path of minimum distance that visits
every city

Representations of Graphs

1 .
4V:L

Adjacency List Adjacency Matrix
T -_.-_.- 1 2 3 4
W A4 __’- 1 0 1 0 1
2160 0 1 0
3 ; 3]lo]o |o |o
] 4 1o |1 |1 |o
* —E—E

Adjacency Matrix or Adjacency List?

B e
on = number of vertices

om = number of edges » Adjacency List

» Uses space O(m+n)

nd(u) = degree of u = = Can iterate over all edges in time
number of edges O(m+n)
Ieaving u = Can answer “Is there an edge from

u to v?”in O(d(u)) time
= Better for sparse graphs (fewer

sAdjacency Matrix edges)

o1 Uses space O(n?)

o Can iterate over all edges in time
O(n?)

o Can answer “Is there an edge
from u to v?” in O(1) time

o Better for dense graphs (lots of
edges)

Graph Algorithms
=

e Search
— depth-first search
— breadth-first search

« Shortest paths

— Dijkstra's algorithm

* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm

Depth-First Search

 Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from

* When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

» Eventually visit all vertices reachable from r

* |[f there are still unvisited vertices, repeat

* O(m) time

Depth-First Search

XA

Depth-First Search

=2

Depth-First Search

=7

Depth-First Search

=7

Depth-First Search

=7

Depth-First Search

A

Depth-First Search

7\

Depth-First Search

7\

Depth-First Search

L7\

Depth-First Search

<7

Depth-First Search

<7,

Depth-First Search

L7

Depth-First Search

L7

Depth-First Search

L7

Depth-First Search

L7

Depth-First Search

L7

Depth-First Search

L7

Depth-First Search

L

Depth-First Search

L

Depth-First Search

X7

Depth-First Search

AA

Depth-First Search

A

Depth-First Search

A

Depth-First Search

A

Breadth-First Search

« Same, except use a queue instead of a
stack to determine which edge to explore
next

Breadth-First Search

XA

Breadth-First Search

<A

Breadth-First Search

A

Breadth-First Search

L7

Breadth-First Search

L7

Breadth-First Search

L7

Breadth-First Search

L7

Breadth-First Search

A

Breadth-First Search

A

Shortest Paths

Suppose you have a US Airways route map
with intercity distances. You want to know the
shortest distance from Ithaca to every city
served by US Airways.

This is known as the single-source shortest
path problem.

Shortest Paths

1 2 3 4
s=1 2.4 .o 2
1 0 2.4 1} 5
1-51//10-9
-1 2 o 0.9

4 31 3 3 0

4 d-1 3|-1 D
Digraph with Corresponding
edge weights matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

Shortest Paths

* Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,

- d(1,1)=0
- d(1,2)=1.6
- d(1,3)=2.5
- d(1,4)=1.5

Dijkstra’s Algorithm

X 2.4
1.5 0.9
4 3
e Let X = {s}
— X is the set of nodes for which we have already determined
the shortest path

* For each node u X, define D(u) = w(s,u)
-D(2)=2.4

_D(3) =
_D(4)=15

Dijkstra’s Algorithm

3.1

« Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) = D(u)

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

~-D(2)=24

_D(3) =
_D(4)=15

Dijkstra’s Algorithm
X

2.4 o2

0.9
15M
T 3

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) =D(u) u=4

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

—D(2)=24

_D(3) =

—D(4)=1.5=d(1,4)

Dijkstra’s Algorithm
X

2.4 o2

0.9
15M
T 3

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) = D(u) u=4

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D(2)=24 48
-DE)= 4%
~D(4)=1.5=d(1,4)

Dijkstra’s Algorithm
X

2.4 o2

0.9
15M
T 3

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) = D(u)

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u)

-D(2)=24 48

—D@B)= 4%
—D(4) = 1.5=d(1,4)

+w(u,v)

Dijkstra’s Algorithm

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) =D(u) u=2

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u)

-D(2) =24 $6=d(1.2)

—D@B)= 4%
—D(4) = 1.5=d(1,4)

Dijkstra’s Algorithm

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) =D(u) u=2

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u)

-D(2) =24 $6=d(1.2)

—D(3)= 4B 25<
—D(4) = 1.5=d(1,4)

Dijkstra’s Algorithm

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) = D(u)

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u)

-D(2)=24 46=d(1.2)

—D(3)= 4B 2B<
—D(4) = 1.5=d(1,4)

Dijkstra’s Algorithm

« Find u X such that D(u) is minimum, add it to X

—at that point, d(s,u) =D(u) u=3

* For each node v X such that (u, VED E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D(2)=24 46=d(1.2)

—D(3)= 4% 25 d(1,3)
~D(4) = 1.5 = d(1,4)

Dijkstra’s Algorithm

Proof of correctness — show that the

following are invariants of the loop:

Forul X, D(u) = d(s,u)

‘Forull X andv X, d(s,u) 6 d(s,v)

*For all u, D(u) is the length of the shortest path
from s to u such that all nodes on the path (except
possibly u) are in X

Implementation:
*Use a priority queue for the nodes not yet taken —
priority is D(u)

Complexity

» Every edge is examined once when its source is
taken into X

» A vertex may be placed in the priority queue
multiple times, but at most once for each
Incoming edge

« Number of insertions and deletions into priority
queue =m + 1, where m = |E]

 Total complexity = O(m log m)

Conclusion

* There are faster but much more complicated
algorithms for single-source, shortest-path problem
that run in time O(n log n + m) using something
called Fibonacci heaps

* It is important that all edge weights be nonnegative
— Dijkstra's algorithm does not work otherwise, we
need a more complicated algorithm called
Warshall's algorithm

* Learn about this and more in CS4820

