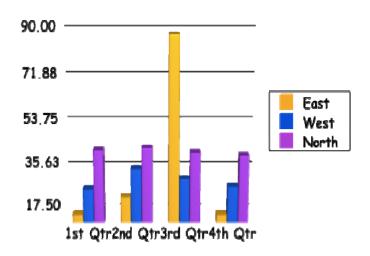


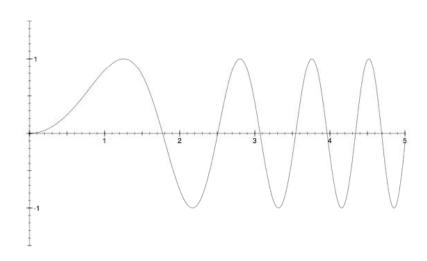
GRAPHS

Announcements

- Prelim 2: Two and a half weeks from now
 - ■Tuesday, Nov 16, 7:30-9pm, Uris G01
- Exam conflicts?
 - □Same deal: just take our exam from 6:00-7:30
- □Old exams available on the course website
 - ☐ The Fall 2009 exam is closest to what we'll use

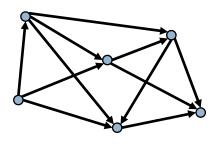
These are not Graphs

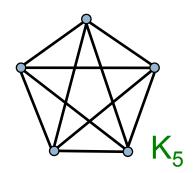


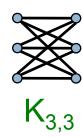


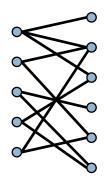
...not the kind we mean, anyway

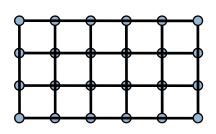
These are Graphs

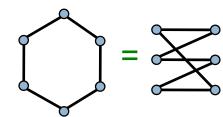












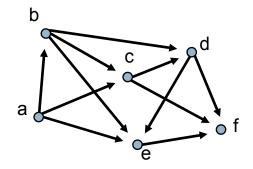
Applications of Graphs

- Communication networks
- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- Geometric modeling
- ...

Graph Definitions

- A directed graph (or digraph) is a pair (V, E) where
 - V is a set
 - □ E is a set of ordered pairs (u,v) where u,v □ V
 - Usually require u v (i.e., no self-loops)
- An element of V is called a vertex (pl. vertices) or node
- An element of E is called an edge or arc
- |V| = size of V, often denoted n
- □ |E| = size of E, often denoted m

Example Directed Graph (Digraph)



$$V = \{a,b,c,d,e,f\}$$

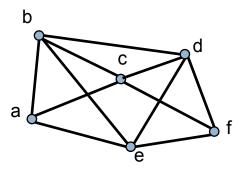
E = \{(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),
(c,f), (d,e), (d,f), (e,f)\}

$$|V| = 6$$
, $|E| = 11$

Example *Undirected* Graph

An *undirected graph* is just like a directed graph, except the edges are *unordered pairs* (*sets*) {u,v}

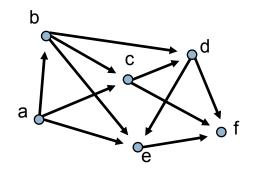
Example:

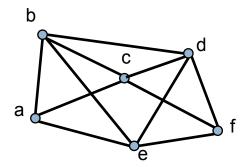


```
V = \{a,b,c,d,e,f\}
E = \{\{a,b\}, \{a,c\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,f\}, \{d,e\}, \{d,f\}, \{e,f\}\}
```

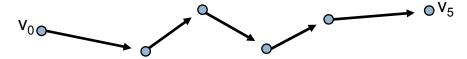
Some Graph Terminology

- Vertices u and v are called the source and sink of the directed edge (u,v), respectively
- Vertices u and v are called the endpoints of (u,v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

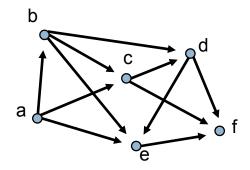




More Graph Terminology



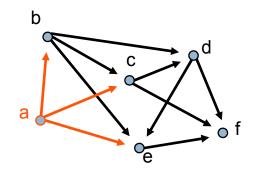
- □ A path is a sequence $v_0, v_1, v_2, ..., v_p$ of vertices such that $(v_i, v_{i+1}) \in E$, $0 \le i \le p-1$
- The length of a path is its number of edges
 - In this example, the length is 5
- A path is simple if it does not repeat any vertices
- \square A cycle is a path $v_0, v_1, v_2, ..., v_p$ such that $v_0 = v_p$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a dag



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

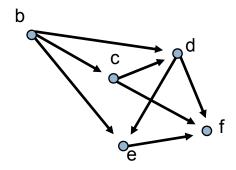
This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

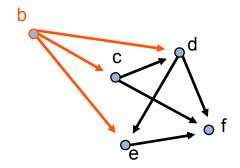
This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

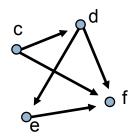
This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

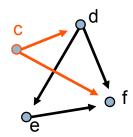
This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

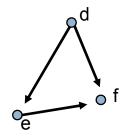
This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

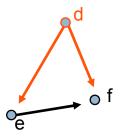
This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm



Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm

Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm

Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm

f

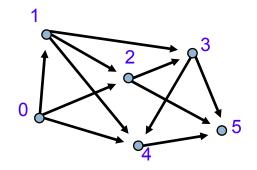
Intuition:

If it's a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm

Topological Sort

- We just computed a topological sort of the dag
 - This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices



 Useful in job scheduling with precedence constraints

Graph Coloring

A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

How many colors are needed to color this graph?

Graph Coloring

A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

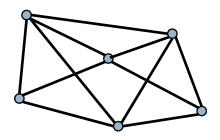
How many colors are needed to color this graph?

An Application of Coloring

- Vertices are jobs
- Edge (u,v) is present if jobs u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph = minimum number of time slots required

Planarity

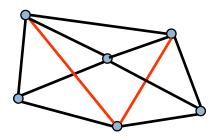
 A graph is planar if it can be embedded in the plane with no edges crossing



□ Is this graph planar?

Planarity

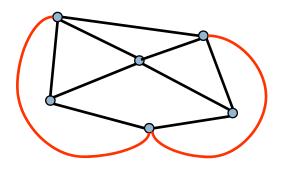
 A graph is planar if it can be embedded in the plane with no edges crossing



- □ Is this graph planar?
 - Yes

Planarity

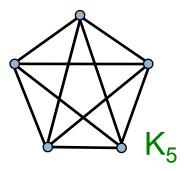
 A graph is planar if it can be embedded in the plane with no edges crossing

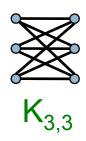


- □ Is this graph planar?
 - Yes

Detecting Planarity

Kuratowski's Theorem





 A graph is planar if and only if it does not contain a copy of K₅ or K_{3,3} (possibly with other nodes along the edges shown)

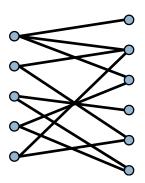
The Four-Color Theorem

Every planar graph is 4-colorable

(Appel & Haken, 1976)

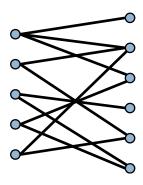
Bipartite Graphs

 A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets

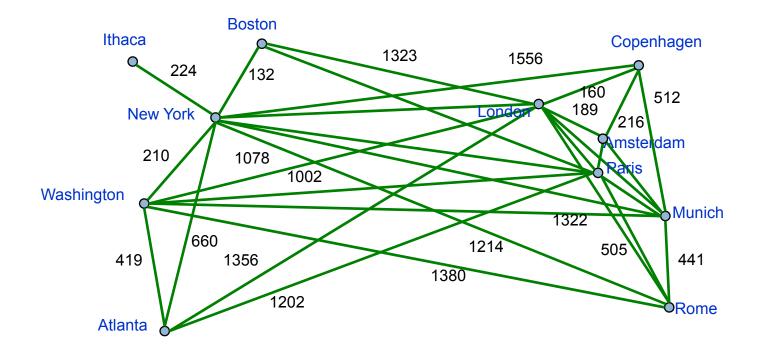


Bipartite Graphs

- The following are equivalent
 - G is bipartite
 - □ G is 2-colorable
 - G has no cycles of odd length

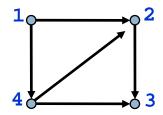


Traveling Salesperson

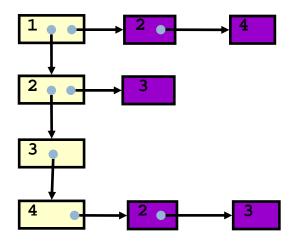


Find a path of minimum distance that visits every city

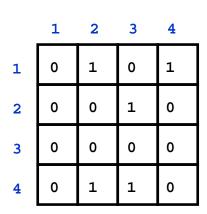
Representations of Graphs



Adjacency List



Adjacency Matrix



Adjacency Matrix or Adjacency List?

- □n = number of vertices
- □m = number of edges
- d(u) = degree of u = number of edges leaving u

■Adjacency Matrix

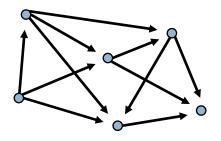
- □ Uses space O(n²)
- Can iterate over all edges in time O(n²)
- □ Can answer "Is there an edge from u to v?" in O(1) time
- Better for dense graphs (lots of edges)

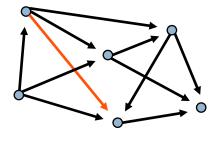
- Adjacency List
- Uses space O(m+n)
- Can iterate over all edges in time O(m+n)
- Can answer "Is there an edge from u to v?" in O(d(u)) time
- Better for sparse graphs (fewer edges)

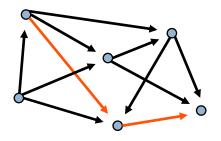
Graph Algorithms

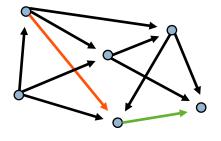
- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
- Kruskal's algorithm

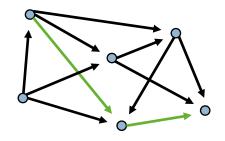
- Follow edges depth-first starting from an arbitrary vertex r, using a stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from r
- If there are still unvisited vertices, repeat
- O(m) time

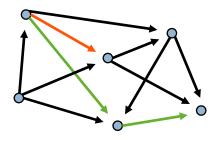


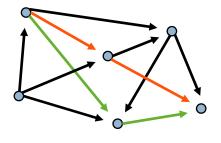


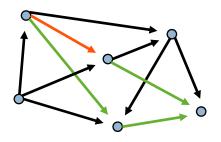


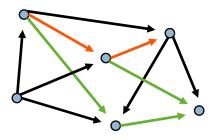


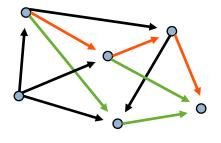


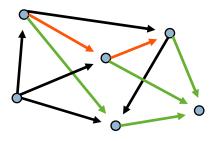


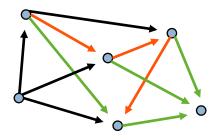


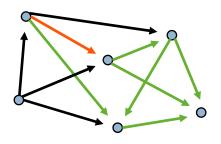


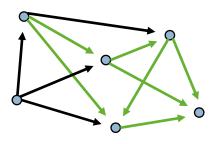


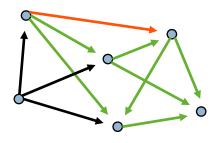


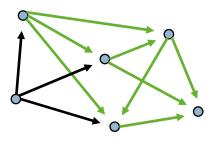


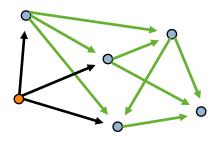


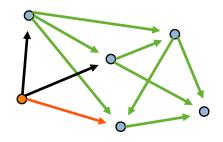


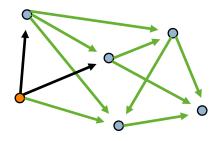


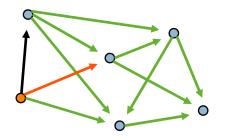


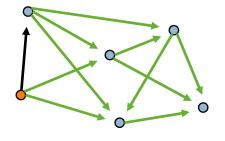


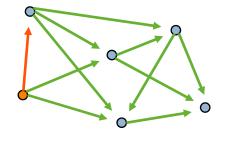


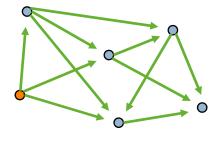


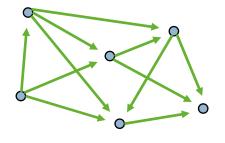




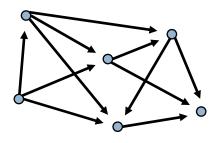


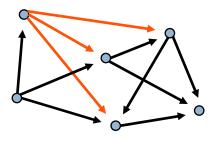


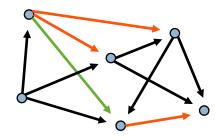


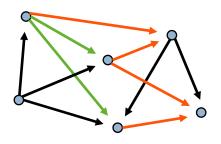


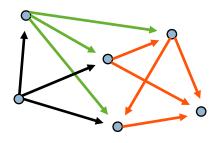
 Same, except use a queue instead of a stack to determine which edge to explore next

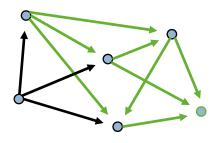


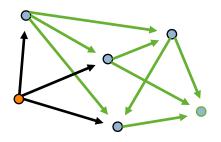


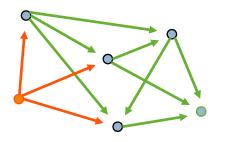


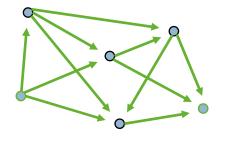










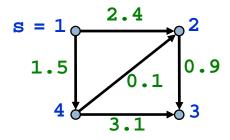


Shortest Paths

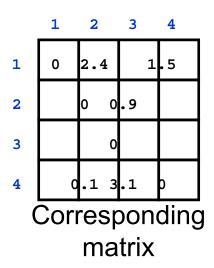
Suppose you have a US Airways route map with intercity distances. You want to know the shortest distance from Ithaca to every city served by US Airways.

This is known as the *single-source shortest* path problem.

Shortest Paths



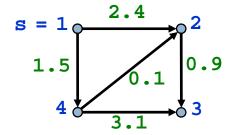
Digraph with edge weights



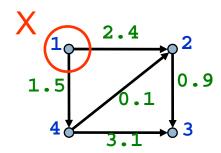
Single-source shortest path problem: Given a graph with edge weights w(u,v) and a designated vertex s, find the shortest path from s to every other vertex (length of a path = sum of edge weights)

74

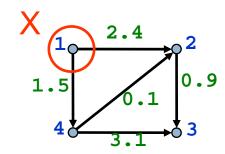
Shortest Paths



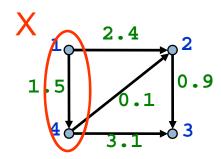
- Let d(s,u) denote the distance (length of shortest path) from s to u. In this example,
- d(1,1) = 0
- d(1,2) = 1.6
- d(1,3) = 2.5
- d(1,4) = 1.5



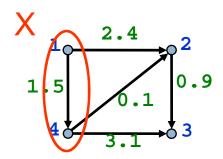
- Let $X = \{s\}$
- X is the set of nodes for which we have already determined the shortest path
- For each node u X, define D(u) = w(s,u)
- -D(2) = 2.4
- -D(3) =
- -D(4) = 1.5



- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u)
- For each node v X such that (u,v) ☐ E, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
- -D(2) = 2.4
- -D(3) =
- -D(4) = 1.5



- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u) u = 4
- For each node v X such that (u,v) ☐ E, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
- -D(2) = 2.4
- -D(3) =
- -D(4) = 1.5 = d(1,4)

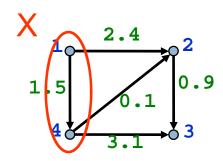


- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u) u = 4
- For each node v X such that (u,v) ☐ E, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

$$-D(2) = 2.4$$

$$-D(3) = 4$$

$$-D(4) = 1.5 = d(1,4)$$

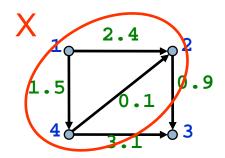


- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u)
- For each node v X such that (u,v) ☐ E, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

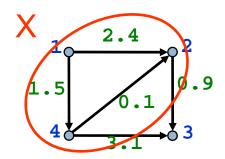
$$-D(2) = 2.4$$
 16

$$-D(3) = 4$$

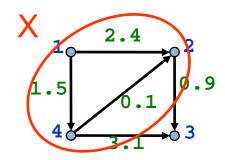
$$-D(4) = 1.5 = d(1,4)$$



- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u) u = 2
- For each node v X such that (u,v) ☐ E,
 if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
- -D(2) = 2.4 4.6 = d(1,2)
- -D(3) = 4
- -D(4) = 1.5 = d(1,4)

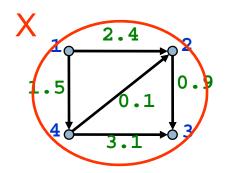


- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u) u = 2
- For each node v X such that (u,v) ☐ E, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
- -D(2) = 2.4 46 = d(1,2)
- $-D(3) = 4 \times 2.5$
- -D(4) = 1.5 = d(1,4)



- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u)
- For each node v X such that (u,v) ☐ E,
 if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
- -D(2) = 2.4 16 = d(1,2)
- $-D(3) = 4 \times 2.5$

$$-D(4) = 1.5 = d(1,4)$$



- Find u X such that D(u) is minimum, add it to X
- -at that point, d(s,u) = D(u) u = 3
- For each node v X such that $(u,v) \square E$, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
- -D(2) = 2.4 16 = d(1,2)
- $-D(3) = 4 \times 2.5 \leftarrow d(1,3)$
- -D(4) = 1.5 = d(1,4)

Proof of correctness – show that the following are invariants of the loop:

- •For $u \square X$, D(u) = d(s,u)
- •For $u \ \square \ X$ and $v \ X$, $d(s,u) \ \delta \ d(s,v)$
- •For all u, D(u) is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:

Use a priority queue for the nodes not yet taken – priority is D(u)

Complexity

- Every edge is examined once when its source is taken into X
- A vertex may be placed in the priority queue multiple times, but at most once for each incoming edge
- Number of insertions and deletions into priority queue = m + 1, where m = |E|
- Total complexity = O(m log m)

Conclusion

- There are faster but much more complicated algorithms for single-source, shortest-path problem that run in time O(n log n + m) using something called *Fibonacci heaps*
- It is important that all edge weights be nonnegative

 Dijkstra's algorithm does not work otherwise, we need a more complicated algorithm called
 Warshall's algorithm
- Learn about this and more in CS4820