

GRAPHS

Announcements

\square Prelim 2: Two and a half weeks from now -Tuesday, Nov 16, 7:30-9pm, Uris G01
\square Exam conflicts?
■Same deal: just take our exam from 6:00-7:30
-Old exams available on the course website
\square The Fall 2009 exam is closest to what we'll use

These are not Graphs

...not the kind we mean, anyway

These are Graphs

Applications of Graphs

\square Communication networks
\square Routing and shortest path problems
\square Commodity distribution (flow)
\square Traffic control
\square Resource allocation
\square Geometric modeling

Graph Definitions

\square A directed graph (or digraph) is a pair (V, E) where
$\square V$ is a set
$\square E$ is a set of ordered pairs (u, v) where $u, v a V$ - Usually require u v (i.e., no self-loops)
\square An element of V is called a vertex (pl . vertices) or node
\square An element of E is called an edge or arc
$\square|\mathrm{V}|=$ size of V , often denoted n
$\square|E|=$ size of E, often denoted m

Example Directed Graph (Digraph)

$$
\begin{aligned}
V= & \{a, b, c, d, e, f\} \\
E= & \{(a, b),(a, c),(a, e),(b, c),(b, d),(b, e),(c, d), \\
& (c, f),(d, e),(d, f),(e, f)\} \\
|V|= & 6,|E|=11
\end{aligned}
$$

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{u, v\}$

Example:

$$
\begin{aligned}
V= & \{a, b, c, d, e, f\} \\
E= & \{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}, \\
& \{d, e\},\{d, f\},\{e, f\}\}
\end{aligned}
$$

Some Graph Terminology

\square Vertices u and v are called the source and sink of the directed edge (u,v), respectively
\square Vertices u and v are called the endpoints of (u, v)
\square Two vertices are adjacent if they are connected by an edge
\square The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
\square The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
\square The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

More Graph Terminology

\square A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that $\left(v_{i}, v_{i+1}\right) \in E, 0 \leq i \leq p-1$
\square The length of a path is its number of edges
\square In this example, the length is 5
\square A path is simple if it does not repeat any vertices
\square A cycle is a path $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}$ such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{p}}$
\square A cycle is simple if it does not repeat any vertices except the first and last
\square A graph is acyclic if it has no cycles
\square A directed acyclic graph is called a dag

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

\square If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Topological Sort

\square We just computed a topological sort of the dag

- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

\square Useful in job scheduling with precedence constraints

Graph Coloring

\square A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?

Graph Coloring

\square A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

\square How many colors are needed to color this graph?

An Application of Coloring

\square Vertices are jobs
\square Edge (u, v) is present if jobs u and v each require access to the same shared resource, and thus cannot execute simultaneously
\square Colors are time slots to schedule the jobs
\square Minimum number of colors needed to color the graph $=$ mum number of time slots required

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?
\square Yes

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?
\square Yes

Detecting Planarity

\square Kuratowski's Theorem

\square A graph is planar if and only if it does not contain a copy of K_{5} or $\mathrm{K}_{3,3}$ (possibly with other nodes along the edges shown)

The Four-Color Theorem

Every planar graph is 4-colorable

(Appel \& Haken, 1976)

Bipartite Graphs

\square A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets

Bipartite Graphs

\square The following are equivalent
$\square G$ is bipartite
$\square \mathrm{G}$ is 2-colorable
\square G has no cycles of odd length

Traveling Salesperson

\square Find a path of minimum distance that visits every city

Representations of Graphs

Adjacency List

Adjacency Matrix

	1	2	3	4
1	0	1	0	1
2	0	0	1	0
	0	0	0	0
	0	1	1	0

Adjacency Matrix or Adjacency List?

$\square \mathrm{n}=$ number of vertices
$\square \mathrm{m}=$ number of edges
$\square d(u)=$ degree of $u=$ number of edges leaving u

Adjacency Matrix

- Uses space $O\left(n^{2}\right)$
\square Can iterate over all edges in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$
\square Can answer "Is there an edge from u to v ?" in $\mathrm{O}(1)$ time
\square Better for dense graphs (lots of edges)
- Adjacency List
- Uses space O(m+n)
- Can iterate over all edges in time $\mathrm{O}(\mathrm{m}+\mathrm{n})$
- Can answer "Is there an edge from u to v?" in $\mathrm{O}(\mathrm{d}(\mathrm{u})$) time
- Better for sparse graphs (fewer edges)

Graph Algorithms

- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
- Kruskal's algorithm

Depth-First Search

- Follow edges depth-first starting from an arbitrary vertex r, using a stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from r
- If there are still unvisited vertices, repeat
- O(m) time

Depth-First Search

Breadth-First Search

- Same, except use a queue instead of a stack to determine which edge to explore next

Breadth-First Search

Shortest Paths

Suppose you have a US Airways route map with intercity distances. You want to know the shortest distance from Ithaca to every city served by US Airways.

This is known as the single-source shortest path problem.

Shortest Paths

Single-source shortest path problem: Given a graph with edge weights $w(u, v)$ and a designated vertex s, find the shortest path from s to every other vertex (length of a path = sum of edge weights)

Shortest Paths

- Let $\mathrm{d}(\mathrm{s}, \mathrm{u})$ denote the distance (length of shortest path) from s to u. In this example,
- $d(1,1)=0$
- $d(1,2)=1.6$
- $d(1,3)=2.5$
- $d(1,4)=1.5$

Dijkstra's Algorithm

- Let $X=\{s\}$
$-X$ is the set of nodes for which we have already determined the shortest path
- For each node u X, define $D(u)=w(s, u)$
$-D(2)=2.4$
$-D(3)=$
$-D(4)=1.5$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u})$
- For each node $v \times$ such that $(u, v) \mathbb{D}$, if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4$
$-D(3)=$
$-D(4)=1.5$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=4$
- For each node $v \times$ such that $(u, v) \mathbf{D} E$, if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4$
$-D(3)=$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=4$
- For each node $v \times$ such that $(u, v) \mathbf{D} E$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4$
$-D(3)=4 \times 8$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u})$
- For each node $v \times$ such that $(u, v) \square E$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad 48$
$-D(3)=4 \times<$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=2$
- For each node $v \times$ such that $(u, v) \mathbf{D} E$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)^{\prime}+w(u, v)$
$-D(2)=2.4 \quad$ 又 $6=d(1,2)$
$-D(3)=4 \times 8$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=2$
- For each node $v \times$ such that $(u, v) \mathbb{D}$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad$ 又 $6=d(1,2)$
$-D(3)=4 \geqslant<2.5<$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u})$
- For each node $v \times$ such that (u, v) D E,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad 46=d(1,2)$
$-D(3)=43<2.4<$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=3$
- For each node $v \times$ such that $(u, v) \mathbf{D} E$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad$ _ $6=d(1,2)$
$-D(3)=\quad 4 \geqslant<2 . x<d(1,3)$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

Proof of correctness - show that the following are invariants of the loop:
-For u DX, D(u) = d(s,u)
-For u DX and v X, d(s,u) $\delta \mathrm{d}(\mathrm{s}, \mathrm{v})$
-For all $u, D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:
-Use a priority queue for the nodes not yet taken priority is $D(u)$

Complexity

- Every edge is examined once when its source is taken into X
- A vertex may be placed in the priority queue multiple times, but at most once for each incoming edge
- Number of insertions and deletions into priority queue $=m+1$, where $m=|E|$
- Total complexity $=\mathrm{O}(\mathrm{m}$ log m$)$

Conclusion

- There are faster but much more complicated algorithms for single-source, shortest-path problem that run in time $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{m})$ using something called Fibonacci heaps
- It is important that all edge weights be nonnegative - Dijkstra's algorithm does not work otherwise, we need a more complicated algorithm called Warshall's algorithm
- Learn about this and more in CS4820

