

These are not Graphs

Graph Definitions

\square A directed graph (or digraph) is a pair (V, E) where
$\square \mathrm{V}$ is a set
$\square E$ is a set of ordered pairs (u, v) where $u, v \square V$ - Usually require u - v (i.e., no self-loops)
\square An element of V is called a vertex (pl . vertices)
or node
An element of E is called an edge or arc
$|\mathrm{V}|=$ size of V , often denoted n
$|E|=$ size of E, often denoted m

Some Graph Terminology

Vertices u and v are called the source and sink of the directed edge (u, v), respectively

- Vertices u and v are called the endpoints of (u, v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

Is This a Dag?

Intuition:
If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{\mathbf{u}, \mathbf{v}\}$

Example:

$V=\{a, b, c, d, e, f\}$
$E=\{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}$, $\{\mathrm{d}, \mathrm{e}\},\{\mathrm{d}, \mathrm{f}\},\{\mathrm{e}, \mathrm{f}\}\}$

More Graph Terminology

\square A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that $\left(v_{i}, v_{i+1}\right) \in E, 0 \leq i \leq p-1$
\square The length of a path is its number of edges \square In this example, the length is 5
\square A path is simple if it does not repeat any vertices
\square A cycle is a path $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}$ such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{p}}$
\square A cycle is simple if it does not repeat any vertices except the first and last
\square A graph is acyclic if it has no cycles
\square A directed acyclic graph is called a das

Is This a Dag?

${ }^{12}$

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
IS This a Dag?

Is This a Dag?

Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

IS This a Dag?
\squareIntuition: \square If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Topological Sort

\square We just computed a topological sort of the dag

- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

Graph Coloring

${ }^{24}$
\square A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

\square How many colors are needed to color this graph?

An Application of Coloring

\square Vertices are jobs
\square Edge (u, v) is present if jobs u and v each require access to the same shared resource, and thus cannot execute simultaneously
\square Colors are time slots to schedule the jobs
\square Minimum number of colors needed to color the graph = mmen number of time slots required

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

\square Is this graph planar?

- Yes

The Four-Color Theorem

	Adjacency Matrix or Adjacency List?

Bipartite Graphs

\square The following are equivalent
$\square G$ is bipartite
$\square G$ is 2-colorable
$\square G$ has no cycles of odd length

Representations of Graphs

C
Adjacency List Adjacency Matrix

Graph Algorithms

- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
-Kruskal's algorithm

Depth-First Search
- Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from
- When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path
- Eventually visit all vertices reachable from r
- f there are still unvisited vertices, repeat
- O(m) time

Depth-First Search

Breadth-First Search

Shortest Paths

- Let $\mathrm{d}(\mathrm{s}, \mathrm{u})$ denote the distance (length of shortest path) from s to u. In this example,
- $d(1,1)=0$
- $d(1,2)=1.6$
- $d(1,3)=2.5$
- $d(1,4)=1.5$

Dijkstra's Algorithm

- Let $X=\{s\}$
-X is the set of nodes for which we have already determined the shortest path
- For each node u X, define $D(u)=w(s, u)$
$-D(2)=2.4$
$-D(3)=$
$-D(4)=1.5$

Dijkstra's Algorithm

- Find $u \times$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u})$
- For each node $v \times$ such that $(u, v) \mathbf{D E}$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4$
$-D(3)=$
$-D(4)=1.5$

Dijkstra's Algorithm

- Find $u \times$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=4$
- For each node $v \times$ such that ($u, v) \mathbf{D} E$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4$
$-D(3)=$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u \times$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=4$
- For each node $v X$ such that $(u, v) \mathbf{D} E$
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad 4.8$
$-D(3)=4) \ll$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u \times$ such that $D(u)$ is minimum, add it to X
-at that point, $d(s, u)=D(u) u=2$
- For each node $v \times$ such that (u,v) DE,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad$ § $6=d(1,2)$
$-D(3)=4 \times 8$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u X$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=2$
- For each node $v \times$ such that $(u, v) \mathbf{D}$,
if $D(u)+w(u, v)<D(v)$, set $D(v) \stackrel{D}{=}(u)+w(u, v)$
$-D(2)=2.4 \quad$ र $6=d(1,2)$
$-D(3)=4 \mathbb{S}<2.5<$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u \times$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u})$
- For each node $v \times$ such that ($u, v) D E$,
if $D(u)+w(u, v)<D(v)$, set $D(v) \stackrel{=}{=}(u)+w(u, v)$
$-D(2)=2.4 \quad$ 又 $6=d(1,2)$
$-D(3)=4.8<2 .><$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

- Find $u \times$ such that $D(u)$ is minimum, add it to X
-at that point, $\mathrm{d}(\mathrm{s}, \mathrm{u})=\mathrm{D}(\mathrm{u}) \mathrm{u}=3$
- For each node $v \times$ such that ($u, v) \mathbf{D} E$,
if $D(u)+w(u, v)<D(v)$, set $D(v)=D(u)+w(u, v)$
$-D(2)=2.4 \quad \forall 6=d(1,2)$
$-D(3)=4><2 . \leq<d(1,3)$
$-D(4)=1.5=d(1,4)$

Dijkstra's Algorithm

 ${ }^{84} \quad 1$Proof of correctness - show that the following are invariants of the loop:
-For u D X, D(u) = d(s,u)
-For u $\boldsymbol{\square} X$ and $v \times, \mathrm{d}(\mathrm{s}, \mathrm{u}) \delta \mathrm{d}(\mathrm{s}, \mathrm{v})$
-For all $u, D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:

- Use a priority queue for the nodes not yet taken priority is $D(u)$

Complexity
- Every edge is examined once when its source is
taken into X
:---
multiple times, but at most once for each
incoming edge
:---
queue $=\mathrm{m}+1$, where $\mathrm{m}=\|\mathrm{E}\|$

Conclusion

- There are faster but much more complicated algorithms for single-source, shortest-path problem that run in time $O(n \log n+m)$ using something called Fibonacci heaps
- It is important that all edge weights be nonnegative - Dijkstra's algorithm does not work otherwise, we need a more complicated algorithm called Warshall's algorithm
- Learn about this and more in CS4820

