
Standard ADTs

Lecture 16
CS2110 – Fall 2008

2

Abstract Data Types (ADTs)

 A method for achieving
abstraction for data structures
and algorithms

 ADT = model + operations

 Describes what each
operation does, but not how it
does it

 An ADT is independent of its
implementation

 In Java, an interface corresponds
well to an ADT
 The interface describes the

operations, but says nothing at all
about how they are implemented

 Example: Stack interface/ADT

public interface Stack {
 public void push(Object x);
 public Object pop();
 public Object peek();
 public boolean isEmpty();
 public void clear();
}

3

Queues & Priority Queues

 ADT Queue
 Operations:

void add(Object x);
Object poll();
Object peek();
boolean isEmpty();
void clear();

 Where used:
 Simple job scheduler (e.g.,

print queue)
 Wide use within other

algorithms

 ADT PriorityQueue
 Operations:

void insert(Object x);
Object getMax();
Object peekAtMax();
boolean isEmpty();
void clear();

 Where used:
 Job scheduler for OS
 Event-driven simulation
 Can be used for sorting
 Wide use within other

algorithms

4

Sets
 ADT Set

 Operations:
void insert(Object element);
boolean contains(Object element);
void remove(Object element);
boolean isEmpty();
void clear();

 Where used:
 Wide use within other algorithms

 Note: no duplicates allowed
 A “set” with duplicates is sometimes called a multiset or bag

5

Dictionaries

 ADT Dictionary (aka Map)
 Operations:

void insert(Object key, Object value);
void update(Object key, Object value);
Object find(Object key);
void remove(Object key);
boolean isEmpty();
void clear();

 Think of: key = word; value = definition
 Where used:

 Symbol tables
 Wide use within other algorithms

6

Data Structure Building Blocks

 These are implementation “building blocks” that are
often used to build more-complicated data structures
 Arrays
 Linked Lists

 Singly linked
 Doubly linked

 Binary Trees
 Graphs

 Adjacency matrix
 Adjacency list

7

Array Implementation of Stack

class ArrayStack implements Stack {

 private Object[] array; //Array that holds the Stack

 private int index = 0; //First empty slot in Stack

 public ArrayStack(int maxSize)

 { array = new Object[maxSize]; }

 public void push(Object x) { array[index++] = x; }

 public Object pop() { return array[--index]; }

 public Object peek() { return array[index-1]; }

 public boolean isEmpty() { return index == 0; }

 public void clear() { index = 0; }

}

max-1

3
2
1
0

4

index

O(1) worst-
case time for
each
operation

Question: What can go wrong?

8

Linked List Implementation of Stack
class ListStack implements Stack {

 private Node head = null; //Head of list that

 //holds the Stack

 public void push(Object x) { head = new Node(x, head); }

 public Object pop() {

 Node temp = head;

 head = head.next;

 return temp.data;

 }

 public Object peek() { return head.data; }

 public boolean isEmpty() { return head == null; }

 public void clear() { head = null; }

}

head

O(1) worst-
case time for
each operation
(but constant
is larger)

Note that array
implementation can
overflow, but the
linked list version
cannot

9

Queue Implementations

 Possible implementations Recall: operations are add,
poll, peek,…

 For linked-list
 All operations are O(1)

 For array with head at A[0]
 poll takes time O(n)
 Other ops are O(1)
 Can overflow

 For array with wraparound
 All operations are O(1)
 Can overflow

Linked List
head last

Array with wraparound
(can overflow)

head last

Array with head always at A[0]
(poll() becomes expensive)

(can overflow)

last

10

A Queue From 2 Stacks

 Add pushes onto stack A
 Poll pops from stack B
 If B is empty, move all elements from stack A to stack B
 Some individual operations are costly, but still O(1) time

per operations over the long run

11

Dealing with Overflow

 For array implementations of stacks and queues, use
table doubling

 Check for overflow with each insert op
 If table will overflow,

 Allocate a new table twice the size
 Copy everything over

 The operations that cause overflow are expensive, but
still constant time per operation over the long run
(proof later)

12

Goal: Design a Dictionary (aka Map)

 Operations

void insert(key, value)
void update(key, value)
Object find(key)
void remove(key)
boolean isEmpty()
void clear()

Array implementation: Using an
array of (key,value) pairs

 Unsorted Sorted
insert O(1) O(n)
update O(n) O(log n)
find O(n) O(log n)
remove O(n) O(n)

n is the number of items
currently held in the dictionary

13

Hashing

 Idea: compute an array index
via a hash function h

 U is the universe of keys
 h: U → [0,…,m-1]

where m = hash table size
 Usually |U| is much bigger than

m, so collisions are possible
(two elements with the same
hash code)

 h should
 be easy to compute
 avoid collisions
 have roughly equal probability

for each table position

Typical situation:
U = all legal identifiers

Typical hash function:
h converts each letter to a
number, then compute a
function of these numbers

14

A Hashing Example

 Suppose each word below
has the following hashCode

jan 7
feb 0
mar 5
apr 2
may 4
jun 7
jul 3
aug 7
sep 2
oct 5

 How do we resolve collisions?
 use chaining: each table

position is the head of a list
 for any particular problem, this

might work terribly

 In practice, using a good hash
function, we can assume
each position is equally likely

15

Analysis for Hashing with Chaining

 Analyzed in terms of load
factor λ = n/m =
(items in table)/(table size)

 We count the expected
number of probes (key
comparisons)

 Goal: Determine expected
number of probes for an
unsuccessful search

 Expected number of probes
for an unsuccessful search =
average number of items per
table position = n/m = λ

 Expected number of probes
for a successful search = 1 +
λ/2 = O(λ)

 Worst case is O(n)

16

Table Doubling

 We know each operation takes time O(λ) where λ=n/m

 So it gets worse as n gets large relative to m

 Table Doubling:
• Set a bound for λ (call it λ0)
• Whenever λ reaches this bound:

• Create a new table twice as big
• Then rehash all the data

• As before, operations usually take time O(1)
• But sometimes we copy the whole table

17

Analysis of Table Doubling

 Suppose we reach
a state with n items
in a table of size m
and that we have
just completed a
table doubling

18

Analysis of Table Doubling, Cont’d

 Total number of insert
operations needed to reach
current table = copying work
+ initial insertions of items
= 2n + n = 3n inserts

 Each insert takes expected
time O(λ0) or O(1), so total
expected time to build entire
table is O(n)

 Thus, expected time per
operation is O(1)

 Disadvantages of table
doubling:

 Worst-case insertion time of
O(n) is definitely achieved (but
rarely)

 Thus, not appropriate for time
critical operations

19

Java Hash Functions

 Most Java classes implement
the hashCode() method

 hashCode() returns an int

 Java’s HashMap class uses
h(X) = X.hashCode() mod m

 h(X) in detail:
int hash = X.hashCode();

int index = (hash & 0x7FFFFFFF) % m;

 What hashCode() returns:
 Integer:

 uses the int value
 Float:

 converts to a bit representation
and treats it as an int

 Short Strings:
 37*previous + value of next

character
 Long Strings:

 sample of 8 characters;
39*previous + next value

20

hashCode() Requirements

 Contract for hashCode() method:
 Whenever it is invoked in the same object, it must return the

same result
 Two objects that are equal (in the sense of .equals(...))

must have the same hash code
 Two objects that are not equal should return different hash

codes, but are not required to do so (i.e., collisions are
allowed)

21

Hashtables in Java

 java.util.HashMap

 java.util.HashSet
 java.util.Hashtable

 Use chaining

 Initial (default) size = 101

 Load factor = λ0 = 0.75

 Uses table doubling
(2*previous+1)

 A node in each chain looks
like this:

hashCode key value next

original hashCode (before mod m)
Allows faster rehashing and
(possibly) faster key comparison

22

Linear & Quadratic Probing

 These are techniques in which
all data is stored directly within
the hash table array

 Linear Probing
 Probe at h(X), then at

 h(X) + 1
 h(X) + 2
 …
 h(X) + i

 Leads to primary clustering
 Long sequences of filled cells

 Quadratic Probing
 Similar to Linear Probing in

that data is stored within the
table

 Probe at h(X), then at
 h(X)+1
 h(X)+4
 h(X)+9
 …
 h(X)+ i2

 Works well when
 λ < 0.5
 Table size is prime

23

Universal Hashing

 Choose a hash function at random from a large parameterized
family of hash functions (e.g., h(x) = ax + b, where a and b are
chosen at random)

 With high probability, it will be just as good as any custom-
designed hash function you can come up with

24

hashCode() and equals()

 We mentioned that the hash codes of two equal objects must
be equal — this is necessary for hashtable-based data
structures such as HashMap and HashSet to work correctly

 In Java, this means if you override Object.equals(), you
had better also override Object.hashCode()

 But how???

25

hashCode() and equals()

class Identifier {
 String name;
 String type;

 public boolean equals(Object obj) {
 if (obj == null) return false;
 Identifier id;
 try {
 id = (Identifier)obj;
 } catch (ClassCastException cce) {
 return false;
 }
 return name.equals(id.name) && type.equals(id.type);
 }

}

26

hashCode() and equals()

class Identifier {
 String name;
 String type;

 public boolean equals(Object obj) {
 if (obj == null) return false;
 Identifier id;
 try {
 id = (Identifier)obj;
 } catch (ClassCastException cce) {
 return false;
 }
 return name.equals(id.name) && type.equals(id.type);
 }

 public int hashCode() {
 return 37 * name.hashCode() + 113 * type.hashCode() + 42;
 }
}

27

hashCode() and equals()
class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null)?
 left.equals(t.left) : t.left == null;
 boolean rEq = (right != null)?
 right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }

}

28

hashCode() and equals()
class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null)?
 left.equals(t.left) : t.left == null;
 boolean rEq = (right != null)?
 right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }

 public int hashCode() {
 int lHC = (left != null)? left.hashCode() : 298;
 int rHC = (right != null)? right.hashCode() : 377;
 return 37 * datum.hashCode() + 611 * lHC - 43 * rHC;
 }
}

29

Dictionary Implementations

Ordered Array
 Better than unordered array because Binary Search can be

used

Unordered Linked List
 Ordering doesn’t help

Hashtables
 O(1) expected time for Dictionary operations

