

SORTING AND ASYMPTOTIC COMPLEXITY

Lecture 13
CS2110 - Fall 2009

InsertionSort

```
//sort a[], an array of int
for (int i = 1; i < a.length; i++) {
    int temp = a[i];
    int k;
    for (k = i; 0 < k && temp < a[k-1]; k--)
        a[k] = a[k-1];
    a[k] = temp;
}
```

\square Many people sort cards this way
\square Invariant: everything to left of \mathbf{i} is already sorted
\square Works especially well when input is nearly sorted

Worst-case is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Consider reverse-sorted input Best-case is O(n)
- Consider sorted input Expected case is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Expected number of inversions is $\mathrm{n}(\mathrm{n}-1) / 4$

SelectionSort

To sort an array of size n:
-Examine a[0] to a[n-1]; find the smallest one and swap it with a [0]
\square Examine \mathbf{a} [1] to $a[n-1]$; find the smallest one and swap it with \mathbf{a} [1]
\square In general, in step i, examine \mathbf{a} [i] to \mathbf{a} [$\mathrm{n}-1$]; find the smallest one and swap it with a[i]

This is the other common way for people to sort cards

Runtime

- Worst-case $O\left(n^{2}\right)$
- Best-case O(n^{2})
- Expected-case O(n^{2})

Divide \& Conquer?

\square It often pays to
\square Break the problem into smaller subproblems,
\square Solve the subproblems separately, and then
\square Assemble a final solution
\square This technique is called divide-and-conquer
\square Caveat: It won't help unless the partitioning and assembly processes are inexpensive
\square Can we apply this approach to sorting?

MergeSort

\square Quintessential divide-and-conquer algorithm
\square Divide array into equal parts, sort each part, then merge
\square Questions:
\square Q1: How do we divide array into two equal parts?

- A1: Find middle index: a.length/2
\square Q2: How do we sort the parts?
- A2: call MergeSort recursively!
\square Q3: How do we merge the sorted subarrays?
- A3: We have to write some (easy) code

Merging Sorted Arrays A and B

\square Create an array \mathbf{C} of size $=$ size of $\mathbf{A}+$ size of \mathbf{B}
\square Keep three indices:

- i into A
- \mathbf{j} into \mathbf{B}
- \mathbf{K} into \mathbf{C}
\square Initialize all three indices to 0 (start of each array)
\square Compare element $\mathbf{A}[\mathbf{i}]$ with $\mathbf{B}[\mathbf{j}]$, and move the smaller element into C [k]
\square Increment i or j, whichever one we took, and \mathbf{k}
\square When either A or B becomes empty, copy remaining elements from the other array (\mathbf{B} or \mathbf{A}, respectively) into \mathbf{C}

Merging Sorted Arrays

MergeSort Analysis

\square Outline (detailed code on the website)
\square Split array into two halves
\square Recursively sort each half
\square Merge the two halves
\square Merge $=$ combine two sorted arrays to make a single sorted array
\square Rule: always choose the smallest item
\square Time: $\mathrm{O}(\mathrm{n})$ where n is the combined size of the two arrays

Runtime recurrence

- Let $T(n)$ be the time to sort an array of size n
$T(n)=2 T(n / 2)+O(n)$
$T(1)=1$

Can show by induction that $T(n)$ is $O(n \log n)$

Alternately, can see that $T(n)$ is $O(n \log n)$ by looking at tree of recursive calls

MergeSort Notes

\square Asymptotic complexity: O(n log n)
\square Much faster than $O\left(n^{2}\right)$
\square Disadvantage
\square Need extra storage for temporary arrays
\square In practice, this can be a disadvantage, even though
MergeSort is asymptotically optimal for sorting
\square Can do MergeSort in place, but this is very tricky (and it slows down the algorithm significantly)
\square Are there good sorting algorithms that do not use so much extra storage?

- Yes: QuickSort

QuickSort

\square Intuitive idea
\square Given an array A to sort, choose a pivot value \mathbf{P}
\square Partition A into two subarrays, AX and AY
$\square A X$ contains only elements $\leq p$

- AY contains only elements $\geq p$
\square Sort subarrays AX and AY separately
\square Concatenate (not merge!) sorted AX and AY to get sorted A
- Concatenation is easier than merging - $O(1)$

QuickSort Questions

\square Key problems
-How should we choose a pivot?
-How do we partition an array in place?

Partitioning in place

\square Can be done in $\mathrm{O}(\mathrm{n})$ time (next slide)

Choosing a pivot

- Ideal pivot is the median, since this splits array in half
- Computing the median of an unsorted array is $\mathrm{O}(\mathrm{n})$, but algorithm is quite complicated
- Popular heuristics:
- Use first value in array (usually not a good choice)
- Use middle value in array
- Use median of first, last, and middle values in array
- Choose a random element

In-Place Partitioning

How can we move all the blues to the left of all the reds?

- Keep two indices, LEFT and RIGHT
- Initialize LEFT at start of array and RIGHT at end of array Invariant: all elements to left of LEFT are blue all elements to right of RIGHT are red
- Keep advancing indices until they pass, maintaining invariant

Now neither LEFT nor RIGHT can advance and maintain invariant. We can swap red and blue pointed to by LEFT and RIGHT indices. SWap After swap, indices can continue to advance until next conflict.

swap

\square Once indices cross, partitioning is done

- If you replace blue with $\leq \mathbf{p}$ and red with $\geq \mathbf{p}$, this is exactly what we need for QuickSort partitioning
- Notice that after partitioning, array is partially sorted
\square Recursive calls on partitioned subarrays will sort subarrays
\square No need to copy/move arrays, since we partitioned in place

QuickSort Analysis

\square Runtime analysis (worst-case)

- Partition can work badly, producing this:

$$
\begin{array}{|l|l|}
\hline \mathbf{p} & \geq \mathbf{p} \\
\hline
\end{array}
$$

- Runtime recurrence
$-T(n)=T(n-1)+n$
\square This can be solved to show worst-case $T(n)$ is $O\left(n^{2}\right)$
\square Runtime analysis (expected-case)
- More complex recurrence
- Can solve to show expected $T(n)$ is $O(n \log n)$
\square Improve constant factor by avoiding QuickSort on small sets
- Switch to InsertionSort (for example) for sets of size, say, $\delta 9$
\square Definition of small depends on language, machine, etc.

Sorting Algorithm Summary

The ones we have discussed
\square InsertionSort
\square SelectionSort
\square MergeSort
\square QuickSort

Other sorting algorithms
\square HeapSort (will revisit this)
\square ShellSort (in text)
\square BubbleSort (nice name)
\square RadixSort
\square BinSort
\square CountingSort

Why so many? Do computer scientists have some kind of sorting fetish or what?

- Stable sorts: Ins, Sel, Mer
- Worst-case O(n log n): Mer, Hea
- Expected O(n log n): Mer, Hea, Qui
- Best for nearly-sorted sets: Ins
- No extra space needed: Ins, Sel, Hea
- Fastest in practice: Qui
- Least data movement: Sel

Lower Bound for Comparison Sorting

Goal: Determine the minimum time required to sort n items
\square Note: we want worst-case, not best-case time
\square Best-case doesn't tell us much; for example, we know Insertion Sort takes $\mathrm{O}(\mathrm{n})$ time on already-sorted input
\square Want to know the worst-case time for the best possible algorithm

But how can we prove anything about the best possible algorithm?

- We want to find characteristics that are common to all sorting algorithms
- Let's limit attention to comparisonbased algorithms and try to count number of comparisons

Comparison Trees

\square Comparison-based algorithms make decisions based on comparison of data elements
\square This gives a comparison tree
\square If the algorithm fails to terminate for some input, then the comparison tree is infinite
\square The height of the comparison tree represents the worst-case number of comparisons for that algorithm
\square Can show that any correct comparison-based algorithm must make at least n log n comparisons in the worst case

Lower Bound for Comparison Sorting

- Say we have a correct comparison-based algorithm
\square Suppose we want to sort the elements in an array \mathbf{B} []
\square Assume the elements of $\mathbf{B}[$] are distinct
\square Any permutation of the elements is initially possible
- When done, $\mathbf{B}[$] is sorted
- But the algorithm could not have taken the same path in the comparison tree on different input permutations

Lower Bound for Comparison Sorting

\square How many input permutations are possible? $n!\sim 2^{n \log n}$

For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree
\square to have at least $n!\sim 2^{n \log n}$ leaves, it must have height at least $n \log n$ (since it is only binary branching, the number of nodes at most doubles at every depth)
atherefore its longest path must be of length at least $n \log n$, and that it its worst-case running time

java.lang.Comparable<T> Interface

public int compareTo(T x);

- Returns a negative, zero, or positive value
- negative if this is before x
- 0 if this.equals(x)
- positive if this is after \mathbf{x}

Many classes implement Comparable

- String, Double, Integer, Character, Date,...
- If a class implements Comparable, then its compareTo method is considered to define that class's natural ordering

Comparison-based sorting methods should work with Comparable for maximum generality

