





# MergeSort

- Quintessential divide-and-conquer algorithm
- Divide array into equal parts, sort each part, then merge

Questions:

Q1: How do we divide array into two equal parts?
 A1: Find middle index: a.length/2

- Q2: How do we sort the parts?
- A2: call MergeSort recursively!
- Q3: How do we merge the sorted subarrays?

□ A3: We have to write some (easy) code







# MergeSort Notes

- Asymptotic complexity: O(n log n)
   Much faster than O(n<sup>2</sup>)
- Disadvantage
  - Need extra storage for temporary arrays
  - In practice, this can be a disadvantage, even though MergeSort is asymptotically optimal for sorting
  - Can do MergeSort in place, but this is very tricky (and it slows down the algorithm significantly)
- Are there good sorting algorithms that do not use so much extra storage?
  - Yes: QuickSort

# QuickSort

#### 🗆 Intuitive idea

- Given an array A to sort, choose a pivot value p
- $\blacksquare$  Partition  ${\bf A}$  into two subarrays, AX and AY
- **AX** contains only elements  $\leq p$
- AY contains only elements ≥ p ■ Sort subarrays AX and AY separately
- Concatenate (not merge!) sorted AX and AY to get sorted A
  - Concatenation is easier than merging O(1)

















## Lower Bound for Comparison Sorting

- Say we have a correct comparison-based algorithm
- Suppose we want to sort the elements in an array B[]
- Assume the elements of B[] are distinct
- Any permutation of the elements is initially possible
- When done, B[] is sorted
- But the algorithm could not have taken the same path in the comparison tree on different input permutations

## Lower Bound for Comparison Sorting

 $\square$  How many input permutations are possible? n!  $\simeq 2^{n\log n}$ 

21

□ For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree

to have at least n! ~  $2^{n \log n}$  leaves, it must have height at least n log n (since it is only binary branching, the number of nodes at most doubles at every depth)

□ therefore its longest path must be of length at least n log n, and that it its worst-case running time

### java.lang.Comparable<T> Interface

#### public int compareTo(T x);

- Returns a negative, zero, or positive value
- negative if this is before x
- 0 if this.equals(x)
  positive if this is after x

22

positive il chiris is anel x

## Many classes implement Comparable

String, Double, Integer, Character, Date,...
If a class implements Comparable, then its compareTo method is considered to define that class's *natural ordering*

Comparison-based sorting methods should work with Comparable for maximum generality