

SelectionSort

To sort an array of size n :
-Examine $\mathbf{a}[0]$ to $\mathbf{a}[\mathbf{n - 1}$]; find the smallest one and swap it with \mathbf{a} [0]
\square Examine $\mathbf{a}[1]$ to $\mathbf{a}[\mathbf{n - 1}$]; find the smallest one and swap it with \mathbf{a} [1]
\square In general, in step i, examine $\mathbf{a}[\mathbf{i}]$ to $\mathbf{a}[\mathbf{n}-1]$; find the smallest one and swap it with a[i]

This is the other common way for people to sort cards

Runtime

- Worst-case $O\left(n^{2}\right)$
- Best-case O(n^{2})
- Expected-case $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Divide \& Conquer?

\square lt often pays to
\square Break the problem into smaller subproblems,
-Solve the subproblems separately, and then
\square Assemble a final solution
\square This technique is called divide-and-conquer -Caveat: It won't help unless the partitioning and assembly processes are inexpensive
\square Can we apply this approach to sorting?

MergeSort

```
\square \text { Quintessential divide-and-conquer algorithm}
Divide array into equal parts, sort each part,
then merge
Questions:
    Q1: How do we divide array into two equal parts?
    \square Al: Find middle index: a.length/2
    \squareQ: How do we sort the parts?
    \square A2: call MergeSort recursively!
    \squareQ3: How do we merge the sorted subarrays?
    \square A3: We have to write some (easy) code
```


Merging Sorted Arrays A and B

- Create an array \mathbf{C} of size $=$ size of $\mathbf{A}+$ size of \mathbf{B}
\square Keep three indices:
- \mathbf{i} into A
- \mathbf{j} into \mathbf{B}
- k into C
- Initialize all three indices to $\mathbf{0}$ (start of each array)

Compare element \mathbf{A} [$\mathbf{i}]$ with $\mathbf{B}[\mathbf{j}]$, and move the smaller element into C [k]
Increment \mathbf{i} or \mathbf{j}, whichever one we took, and \mathbf{k}
When either A or B becomes empty, copy remaining
elements from the other array (\mathbf{B} or \mathbf{A}, respectively) into \mathbf{C}

MergeSort Notes

\square Asymptotic complexity: $O(n \log n)$

- Much faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$
\square Disadvantage
- Need extra storage for temporary arrays
- In practice, this can be a disadvantage, even though MergeSort is asymptotically optimal for sorting
- Can do MergeSort in place, but this is very tricky (and it slows down the algorithm significantly)
\square Are there good sorting algorithms that do not use so much extra storage? - Yes: QuickSort

MergeSort Analysis

\square Outline (detailed code on	Runtime recurrence - Let $T(n)$ be the time to sort an
the website)	array of size n
\square Split array into two halves	$T(n)=2 T(n / 2)+O(n)$
\square Recursively sort each half	$T(1)=1$

\square Merge $=$ combine two	Can show by induction that
sorted arrays to make a	T(n) is O(n log n)
single sorted array	Alternately, can see that
\square Rule: always choose the smallest item	T(n) is O(n log n) by looking at
Time: $O(n)$ where n is the combined size of the two arrays	tree of recursive calls

Merge $=$ combine two

Rule: always choose the smallest item the two arrays

Runtime recurrence
array of size n
$+O(n)$

Can show by induction that $T(n)$ is $O(n \log n)$
$T(n)$ is $O(n \log n)$ by looking at tree of recursive calls

QuickSort

\square Intuitive idea
\square Given an array \mathbf{A} to sort, choose a pivot value \mathbf{p}
\square Partition \mathbf{A} into two subarrays, $\mathbf{A X}$ and $\mathbf{A Y}$

- $\mathbf{A X}$ contains only elements $\leq p$
- AY contains only elements $\geq \mathbf{p}$
\square Sort subarrays $A X$ and $A Y$ separately
\square Concatenate (not merge!) sorted AX and AY to get sorted A
- Concatenation is easier than merging - $\mathrm{O}(1)$

QuickSort Questions

\square Key problems	Choosing a pivot
- How should we choose a pirot?	- Ideal pivot is the median, since this splits array in half
-How do we partition an array in place?	- Computing the median of an unsorted array is $\mathrm{O}(\mathrm{n})$, but algorithm is quite complicated
	- Popular heuristics:
Partitioning in place - Can be done in $\mathrm{O}(\mathrm{n})$ time (next slide)	- Use first value in array (usually not a good choice)
	- Use middle value in array
	- Use median of first, last, and middle values in array
	- Choose a random element

In-Place Partitioning

How can we move all the blues to the left of all the reds?

- Keep two indices, LEFT and RIGHT
- Initialize LEFT at start of array and RIGHT at end of array Invariant: all elements to left of LEFT are blue all elements to right of RIGHT are red
- Keep advancing indices until they pass, maintaining invariant

\square Once indices cross, partitioning is done
- If you replace blue with $\leq \mathbf{p}$ and red with $\geq \mathbf{p}$, this is exactly what we need for QuickSort partitioning
\square Notice that after partitioning, array is partially sorted
- Recursive calls on partitioned subarrays will sort subarrays
- No need to copy/move arrays, since we partitioned in place

QuickSort Analysis

\square Runtime analysis (worst-case)
\qquad

- Partition can work badly, producing this:
- Runtime recurrence
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n}$
- This can be solved to show worst-case $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
\square Runtime analysis (expected-case)
G More complex recurrence
- Can solve to show expected $T(n)$ is $O(n \log n)$
\square Improve constant factor by avoiding
QuickSort on small sets
- Switch to InsertionSort (for example) for sets of size, say, $\delta 9$
- Definition of small depends on language, machine, etc

java.lang. Comparable<T> Interface
Lower Bound for Comparison Sorting
- How many input permutations are possible? $n!\sim 2^{\text {n } \log n}$
\square For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree
to have at least $n!\sim 2^{n} \log n$ leaves, it must have height at least $n \log n$ (since it is only binary branching, the number of nodes at most
doubles at every depth)
-therefore its longest path must be of length at least $n \log n$, and that it its worst-case running time

- Suppose we want to sort the elements in an array B[]
- Assume the elements of $\mathbf{B}[$] are distinct
- Any permutation of the elements is initially possible
\square When done, $\mathbf{B}[$] is sorted
- But the algorithm could not have taken the same path in the comparison tree on different input permutations

public int compareTo(T x);
- Returns a negative, zero, or positive value
- negative if this is before x
- 0 if this.equals (x)
- positive if this is after \mathbf{x}

Many classes implement Comparable

- String, Double, Integer, Character, Date,
- If a class implements Comparable, then its compareTo method is considered to define that class's natural ordering

Comparison-based sorting methods should work with Comparable for maximum generality

