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SEARCHING,
SORTING, AND
ASYMPTOTIC COMPLEXITY
Lecture 12
CS2110 – Fall 2009 

What Makes a Good Algorithm?
2

Suppose you have two possible algorithms or data 
structures that basically do the same thing; which is 
better?

W ll  h t d    b  b tt ?Well… what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

How do we measure time and space for an algorithm?

Sample Problem: Searching
3

static boolean find(int[] a, int item) {

for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;

Determine if a sorted array of integers contains a given integer
First solution: Linear Search (check each element)

}

return false;

}

static boolean find(int[] a, int item) {
for (int x : a) {

if (x == item) return true;
}
return false;

}

Sample Problem: Searching
4

static boolean find (int[] a, int item) {

int low = 0;

int high = a.length - 1;

while (low <= high) {

int mid = (low + high)/2;

Second 
solution: 
Binary 
Search

if (a[mid] < item)

low = mid + 1;

else if (a[mid] > item)

high = mid - 1;

else return true;

}

return false;

} 

Linear Search vs Binary Search
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Which one is better?
Linear Search is easier to program 

But Binary Search is faster… isn’t 
it?

Simplifying assumption #1: Use 
the size of the input rather than 
the input itself

How do we measure to 
show that one is faster 
than the other

Experiment?

Proof?

Which inputs do we use?

For our sample search problem, 
the input size is n+1 where n is the 
array size

Simplifying assumption #2:
Count the number of “basic 
steps” rather than computing 
exact times

One Basic Step = One Time Unit
6

Basic step:
input or output of a scalar value

accessing the value of a scalar 
variable, array element, or field of 
an object

For a conditional, count 
number of basic steps on the 
branch that is executed

an object

assignment to a variable, array 
element, or field of an object

a single arithmetic or logical 
operation

method invocation (not counting 
argument evaluation and execution 
of the method body)

For a loop, count number of 
basic steps in loop body times 
the number of iterations

For a method, count number of 
basic steps in method body 
(including steps needed to 
prepare stack-frame)
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Runtime vs Number of Basic Steps
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But is this cheating?
The runtime is not the same as the 
number of basic steps

Time per basic step varies depending on 
computer, on compiler, on details of 

d

Which is better?
n or n2 time?
100 n or n2 time?
10,000 n or n2 time?

A t l lti li ticode…

Well…yes, in a way
But the number of basic steps is 
proportional to the actual runtime

As n gets large, multiplicative 
constants become less 
important

Simplifying assumption #3:
Ignore multiplicative constants

Using Big-O to Hide Constants

We say f(n) is order of g(n) if f(n) 
is bounded by a constant times 
g(n)

Notation: f(n) is O(g(n))

Example: (n2 + n) is O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2 n2 for n ≥1

8

Roughly, f(n) is O(g(n)) means that 
f(n) grows like g(n) or slower, to 
within a constant factor

"Constant" means fixed and 
independent of n

So by definition, n2 + n is O(n2)     
for c=2 and N=1

Formal definition: f(n) is O(g(n)) if there exist constants 
c and N such that for all n ≥ N, f(n) ≤ c·g(n)

A Graphical View
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c·g(n)

f(n)

To prove that f(n) is O(g(n)):
Find an N and c such that f(n) δ c g(n) for all nεN

We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

N

Big-O Examples
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Claim: 100 n + log n is O(n)

We know log n ≤ n for n ≥ 1

Claim: logB n is O(logA n)

since logB n is (logB A)(logA n)
�So 100 n + log n ≤ 101 n 

for n ≥ 1

So by definition,

100 n + log n is O(n)

for c = 101 and N = 1

gB ( gB )( gA )

Question: Which grows faster: 
n or log n?

�
�

Big-O Examples
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Let f(n) = 3n2 + 6n – 7
f(n) is O(n2)
f(n) is O(n3)
f(n) is O(n4)
…

( )  4  l   + 34  89

Only the leading term (the term 
that grows most rapidly) 
matters

g(n) = 4 n log n + 34 n – 89
g(n) is O(n log n)
g(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
a(n) is O(1)

Problem-Size Examples
12

Suppose we have a computing device that can 
execute 1000 operations per second; how large a 
problem can we solve?

1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21
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Commonly Seen Time Bounds
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O(1) constant excellent

O(log n) logarithmic excellent

O(n) linear good

O(n log n) n log n pretty good

O(n2) quadratic OK

O(n3) cubic maybe OK

O(2n) exponential too slow

Worst-Case/Expected-Case Bounds
14

We can’t possibly 
determine time bounds 
for all possible inputs of 
size n

Worst-case
Determine how much time is 
needed for the worst possible input 
of size n

Simplifying assumption 
#4: Determine number 
of steps for either

worst-case or
expected-case

of size n

Expected-case
Determine how much time is 
needed on average for all inputs of 
size n

Our Simplifying Assumptions
15

Use the size of the input rather than the input itself – n

Count the number of “basic steps” rather than computing exact times

Multiplicative constants and small inputs ignored (order-of, big-O)

Determine number of steps for either
worst-case
expected-case

These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching
16

Linear Search 

static boolean find (int[] a, int item) 
{

for (int i = 0; i < a.length; i++) {

Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high)/2;

if (a[i] == item) return true;

}

return false;

}

worst-case time = O(n)

if (a[mid] < item)
low = mid+1;

else if (a[mid] > item)
high = mid - 1;

else return true;
}
return false;

}

worst-case time = O(log n)

Comparison of Algorithms
17

Comparison of Algorithms
18
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Comparison of Algorithms
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Analysis of Matrix Multiplication
20

Code for multiplying n-by-n  matrices A and B:
By convention, matrix problems are measured in terms of n, the 
number of rows and columns
Note that the input size is really 2n2, not n
Worst-case time is O(n3)( )
Expected-case time is also O(n3)

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k]*B[k][j];
}

Remarks
21

Once you get the hang of this, you can quickly zero 
in on what is relevant for determining asymptotic 
complexity

For example, you can usually ignore everything that is 
not in the innermost loop.  Why?

Main difficulty:
Determining runtime for recursive programs

Why Bother with Runtime Analysis?
22

Computers are so fast these 
days that we can do 
whatever we want using just 
simple algorithms and data 
structures, right?
Well not really – data-

Problem of size n=103

A: 103 sec ≈ 17 minutes
A': 102 sec ≈ 1.7 minutes
B: 102 sec ≈ 1.7 minutes

Well…not really data-
structure/algorithm 
improvements can be a very
big win
Scenario:

A runs in n2 msec
A' runs in n2/10 msec
B runs in 10 n log n msec

Problem of size n=106

A: 109 sec ≈ 30 years
A': 108 sec ≈ 3 years
B: 2·105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years

Algorithms for the Human Genome
23

Human genome 
= 3.5 billion nucleotides 
~ 1 Gb

@1 base-pair 
instruction/⎧sec

n2 → 388445 years
n log n → 30.824 hours
n → 1 hour

Limitations of Runtime Analysis

Big-O can hide a very 
large constant

Example: selection
Example: small problems

Your program may not 
be run often enough to 
make analysis worthwhile

Example  

24

a p e: s a  p ob e s

The specific problem you 
want to solve may not be 
the worst case

Example: Simplex method 
for linear programming

Example: 
one-shot vs. every day
You may be analyzing 

and improving the wrong 
part of the program

Very common situation
Should use profiling tools
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Summary
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Asymptotic complexity 
Used to measure of time (or space) required by an 
algorithm
Measure of the algorithm, not the problem

Searching a sorted array 
Linear search: O(n) worst case timeLinear search: O(n) worst-case time
Binary search: O(log n) worst-case time

Matrix operations:
Note: n = number-of-rows = number-of-columns
Matrix-vector product: O(n2) worst-case time
Matrix-matrix multiplication: O(n3) worst-case time

More later with sorting and graph algorithms


