
9/28/2010

1

INTRODUCTION TO
GRAPHICAL USER INTERFACES

(GUIS)
Lecture 10

CS2110 – Fall 2009

Announcements
2

A3 will be posted shortly, please start early

Prelim 1: Thursday October 14, Uris Hall G01
We do NOT have any scheduled makeup examWe do NOT have any scheduled makeup exam
People with conflicts can take the exam early.

The NORMAL scheduled time is 7:30-9:00
If you have a conflict, take it from 6:00-7:30
Out of town conflicts: you’ll take it during one of these two
time periods, supervised by some trustworthy person, who
can receive exam/send it back

Interactive Programs
3

“Classic” view of computer
programs: transform inputs
to outputs, stop

input

output

Event-driven programs:
interactive, long-running

Servers interact with clients
Applications interact with user(s)

user user

program

input
events

output
events

GUI Motivation

Interacting with a program
Program-Driven = Proactive

Statements execute in sequential,
predetermined order

Typically use keyboard or file I/O, but
program determines when that happens

Design...Which to pick?
Program called by another
program?

Program used at command line?

Program interacts often with

4

program determines when that happens

Usually single-threaded

Event-Driven = Reactive
Program waits for user input to activate
certain statements

Typically uses a GUI (Graphical User
Interface)

Often multi-threaded

user?

Program used in window
environment?

How does Java do
GUIs?

Java Support for Building GUIs

Java Foundation
Classes

Classes for building GUIs

Major components
awt and swing

Our main focus: Swing
Building blocks of GUIs

Windows & components

User interactions

Built upon the AWT (Abstract Window

5

awt and swing

Pluggable look-and-feel support

Accessibility API

Java 2D API

Drag-and-drop Support

Internationalization

p (
Toolkit)

Java event model

Why Swing?
Easier to understand than SWT

Lonnie used SWT in A3 but you don’t
actually need to understand the code
he wrote

Swing versus SWT versus AWT

AWT came first
Swing builds on AWT

Strives for total
portability

SWT is “new”
Goal is best
performance
Great fit with

6

p y
Secretly seems to have a
grudge against Windows
Basic architecture is
pretty standard

Windows system
Basic architecture is
pretty standard

We use SWT in A3

9/28/2010

2

Java Foundation Classes
7

Pluggable Look-and-Feel Support
Controls look-and-feel for particular windowing environment
E.g., Java, Windows, Mac

Accessibility API
Supports assistive technologies such as screen readers and Braille

Java 2D
Drawing
Includes rectangles, lines, circles, images, ...

Drag-and-drop
Support for drag and drop between Java application and a native application

Internationalization
Support for other languages

GUI Statics and GUI Dynamics

Components

buttons, labels, lists, sliders,
menus, ...

Events

button-press, mouse-click, key-
press, ...

8

Statics: what’s drawn on the screen Dynamics: user interactions

,

Containers: components that
contain other components

frames, panels, dialog boxes, ...

Layout managers: control
placement and sizing of
components

p ,

Listeners: an object that responds
to an event

Helper classes

Graphics, Color, Font,
FontMetrics, Dimension, ...

Creating a Window in SWT
9

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class HelloWorld {
public static void main(String[] args) {

//create the window
Display display = new Display();
Shell shell = new Shell(display);
Label label = new Label(shell, SWT.NONE);

label.setText("Basic Test!");
label.pack();
shell.pack();
shell.open();

// quit Java after closing the window
while (!shell.isDisposed()) {

if (!display.readAndDispatch())
display.sleep();

}
display.dispose ();

}
}

Creating a Window in Swing
10

import javax.swing.*;

public class Basic1 {
public static void main(String[] args) {

//create the window
JFrame f = new JFrame("Basic Test!");JFrame f = new JFrame(Basic Test!);
//quit Java after closing the window
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200, 200); //set size in pixels
f.setVisible(true); //show the window

}
}

Things to notice

Code style is similar
Both are really “customizing” a prebuilt framework
You write little bits and pieces of software that runs in
the context of the preexisting structure

11

SWT oriented towards somewhat finer control

Swing aims for a sturdy design, but can be harder
to customize.

Creating a Window Using a Constructor
12

import javax.swing.*;

public class Basic2 extends JFrame {

public static void main(String[] args) {
new Basic2();

}}

public Basic2() {
setTitle("Basic Test2!"); //set the title
//quit Java after closing the window
setDefaultCloseOperation(EXIT_ON_CLOSE);
setSize(200, 200); //set size in pixels
setVisible(true); //show the window

}
}

9/28/2010

3

A More Extensive Example
13 import javax.swing.*;

import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);

public Intro() {
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new FlowLayout(FlowLayout.LEFT)); //set layout manager
add(myButton); //add components
add(label);add(label);

myButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
label.setText("Count: " + count);

}
});
pack();
setVisible(true);

}

public static void main(String[] args) {
try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception exc) {}
new Intro();

}
}

GUI Statics
14

Determine which components you want
Choose a top-level container in which to put the
components (JFrame is often a good choice)components (JFrame is often a good choice)
Choose a layout manager to determine how
components are arranged
Place the components

Components = What You See
15

Visual part of an interface
Represents something with position and size
Can be painted on screen and can receive events
B tt l b l li t lid Buttons, labels, lists, sliders, menus, ...

Some windows have hidden components that
become visible only when the user takes some action

Component Examples
16

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame {

public ComponentExamples() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(new JButton("Button"));
add(new JLabel("Label"));
add(new JComboBox(new String[] { "A" "B" "C" }));add(new JComboBox(new String[] { A , B , C }));
add(new JCheckBox("JCheckBox"));
add(new JSlider(0, 100));
add(new JColorChooser());

setDefaultCloseOperation(EXIT_ON_CLOSE);
pack();
setVisible(true);

}

public static void main(String[] args) {
try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception exc) {}
new ComponentExamples();

}
}

More Components
17

JFileChooser: allows choosing a file
JLabel: a simple text label
JTextArea: editable text
JTextField editable text (one line)JTextField: editable text (one line)
JScrollBar: a scrollbar
JPopupMenu: a pop-up menu
JProgressBar: a progress bar
Lots more!

Layout

Issue here concerns the way the components are
placed on the screen

If you do it statically (and you can) the resulting

18

If you do it statically (and you can), the resulting
application can’t be resized easily

So GUI builders offer a more dynamic option

9/28/2010

4

Containers
19

A container is a component
that

Can hold other components
Has a layout manager

Heavyweight vs. lightweight
A heavyweight component

There are three basic top-level
containers
JWindow: top-level window with no
border
JFrame: top-level window with borderA heavyweight component

interacts directly with the host
system
JWindow, JFrame, and JDialog
are heavyweight
Except for these top-level
containers, Swing components
are almost all lightweight

JPanel is lightweight

JFrame: top level window with border
and (optional) menu bar
JDialog: used for dialog windows

Another important container
JPanel: used mostly to organize
objects within other containers

A Component Tree
20

JFrame

JPanel

JPanel JPanel

JPanel JPanel

JPanel JPanel

JComboBox (mi)
JComboBox (km)

JTextField (2000)

JSlider
JTextField (3226)

JSlider

JPanelJPanel

Layout Managers
21

A layout manager controls placement
and sizing of components in a
container

If you do not specify a layout
manager, the container will use a
default:

JPanel default = FlowLayout

General syntax
container.setLayout(new LayoutMan());

Examples:

JPanel p1 =
JPanel default FlowLayout

JFrame default = BorderLayout

Five common layout managers:
BorderLayout, BoxLayout,
FlowLayout, GridBagLayout,
GridLayout

new JPanel(new BorderLayout());

JPanel p2 = new JPanel();

p2.setLayout(new BorderLayout());

Some Example Layout Managers
22

FlowLayout
Components placed from left to right in
order added
When a row is filled, a new row is
started
Lines can be centered, left-justified or
right-justified (see FlowLayout

BorderLayout
Divides window into five areas: North,
South, East, West, Center

Adding components
FlowLayout and GridLayout use
container add(component)right-justified (see FlowLayout

constructor)
See also BoxLayout

GridLayout
Components are placed in grid pattern
number of rows & columns specified in
constructor
Grid is filled left-to-right, then top-to-
bottom

container.add(component)

BorderLayout uses
container.add(component, index)
where index is one of
BorderLayout.NORTH

BorderLayout.SOUTH

BorderLayout.EAST

BorderLayout.WEST
BorderLayout.CENTER

FlowLayout Example

23 import javax.swing.*;
import java.awt.*;

public class Statics1 {
public static void main(String[] args) {

new S1GUI();
}

}

class S1GUI {
private JFrame f;

public S1GUI() {
f = new JFrame("Statics1");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(500, 200);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)

f.add(new JButton("Button " + b));
f.setVisible(true);

}
}

BorderLayout Example

24 import javax.swing.*;
import java.awt.*;

public class Statics2 {
public static void main(String[] args) { new S2GUI(); }

}

class ColoredJPanel extends JPanel {
Color color;
ColoredJPanel(Color color) {

this.color = color;
}
public void paintComponent(Graphics g) {

g setColor(color);g.setColor(color);
g.fillRect(0, 0, 400, 400);

}
}

class S2GUI extends JFrame {
public S2GUI() {

setTitle("Statics2");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(400, 400);
add(new ColoredJPanel(Color.RED), BorderLayout.NORTH);
add(new ColoredJPanel(Color.GREEN), BorderLayout.SOUTH);
add(new ColoredJPanel(Color.BLUE), BorderLayout.WEST);
add(new ColoredJPanel(Color.YELLOW), BorderLayout.EAST);
add(new ColoredJPanel(Color.BLACK), BorderLayout.CENTER);
setVisible(true);

}
}

9/28/2010

5

GridLayout Example

25
import javax.swing.*;
import java.awt.*;

public class Statics3 {
public static void main(String[] args) { new S3GUI(); }

}

class S3GUI extends JFrame {
static final int DIM = 25;
static final int SIZE = 12;
static final int GAP = 1;

public S3GUI() {
setTitle("Statics3");
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new GridLayout(DIM DIM GAP GAP));setLayout(new GridLayout(DIM, DIM, GAP, GAP));
for (int i = 0; i < DIM * DIM; i++) add(new MyPanel());
pack();
setVisible(true);

}

class MyPanel extends JPanel {
MyPanel() { setPreferredSize(new Dimension(SIZE, SIZE)); }
public void paintComponent(Graphics g) {

float gradient =
1f - ((float)Math.abs(getX() - getY()))/(float)((SIZE + GAP) * DIM);

g.setColor(new Color(0f, 0f, gradient));
g.fillRect(0, 0, getWidth(), getHeight());

}
}

}

More Layout Managers
26

CardLayout
Tabbed index card look from
Windows

G idB L t

Custom
Can define your own layout
manager
But best to try Java's layout
managers first...

GridBagLayout
Most versatile, but complicated

Null
No layout manager
Programmer must specify absolute
locations
Provides great control, but can be
dangerous because of platform
dependency

So what about AWT?
27

AWT
Initial GUI toolkit for Java
Provided a “Java” look
and feel

Swing was built “on” AWT
More recent (since Java 1.2) GUI
toolkit
Added functionality (new
components)
Supports look and feel for various

Basic API: java.awt.* platforms (Windows, Mac)
Basic API: javax.swing.*

Did Swing replaced AWT?
Not quite: both use the AWT event
model

Code Examples
28

Intro.java
Button & counter

Basic1.java
Create a window

Basic2.java

ComponentExamples.java
Sample components
Statics1.java
FlowLayout example
Statics2.java
BorderLa o t examplej

Create a window using a constructor

Calculator.java
Shows use of JOptionPane to
produce standard dialogs

BorderLayout example
Statics3.java
GridLayout example
LayoutDemo.java
Multiple layouts

