
9/12/2010

1

GRAMMARS &
PARSING
Lecture 7
CS2110 – Fall 2009

Java Tips
2

Declare fields and methods
public if they are to be visible
outside the class; helper methods
and private data should be
declared private
Constants that will never be
h d h ld b d l d

instead of
if (s.equals("")) {

f = true;
} else {

f = false;
}

itchanged should be declared
final

Public classes should appear in a
file of the same name
Two kinds of boolean operators:

e1 & e2: evaluate both and
compute their conjunction
e1 && e2: evaluate e1; don’t
evaluate e2 unless necessary

write
f = s.equals("");

instead of
if (s.equals("")) {

f = a;
} else {

f = b;
}
write
f = s.equals("")? a : b;

Application of Recursion
3

So far, we have discussed recursion on
integers

Factorial, fibonacci, combinations, an

Let us now consider a new application that
shows off the full power of recursion: parsing

Parsing has numerous applications:
compilers, data retrieval, data mining,…

Motivation
4

The cat ate the rat.
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the
mat slowly.

Not all sequences of words are
legal sentences
The ate cat rat the
How many legal sentences are
there?
How many legal programs areThe small cat that sat in the hat ate

the big rat on the mat slowly.
The small cat that sat in the hat ate
the big rat on the mat slowly, then
got sick.
…

How many legal programs are
there?
Are all Java programs that
compile legal programs?
How do we know what programs
are legal?

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html

A Grammar
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

5

Grammar: set of rules for generating
sentences in a language
Examples of Sentence:
boys see bunnies
bunnies like girls
…Verb → see

Our sample grammar has these
rules:

A Sentence can be a Noun
followed by a Verb followed by a
Noun
A Noun can be ‘boys’ or ‘girls’ or
‘bunnies’
A Verb can be ‘like’ or ‘see’

…

White space between words does
not matter
The words boys, girls, bunnies, like,
see are called tokens or terminals
The words Sentence, Noun, Verb are
called nonterminals
This is a very boring grammar
because the set of Sentences is finite
(exactly 18 sentences)

A Recursive Grammar
6

Sentence → Sentence and
Sentence
Sentence → Sentence or
Sentence
Sentence → Noun Verb Noun
Noun → boys

Examples of Sentences in this
language:
boys like girls
boys like girls and girls like bunnies
boys like girls and girls like bunnies
and girls like bunnies

Noun → girls
Noun → bunnies
Verb → like
Verb → see

This grammar is more interesting
than the last one because the set of
Sentences is infinite

boys like girls and girls like bunnies
and girls like bunnies and girls like
bunnies
………

What makes this set infinite?
Answer:
Recursive definition of Sentence

9/12/2010

2

Detour
7

What if we want to add a period at the end of every sentence?
Sentence → Sentence and Sentence .
Sentence → Sentence or Sentence .
Sentence → Noun Verb Noun .
Noun →Noun → …

Does this work?
No! This produces sentences like:

girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with Periods
8

PunctuatedSentence → Sentence
.

Sentence → Sentence and
Sentence
Sentence → Sentence or
S t

Add a new rule that adds a
period only at the end of
the sentence.

The tokens here are the 7
words plus the period ()Sentence

Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

words plus the period (.)

This grammar is
ambiguous:

boys like girls
and girls like boys
or girls like bunnies

Grammar for Simple
Expressions

9

E → integer
E → (E + E)

Simple expressions:
An E can be an integer.

Here are some legal expressions:
2
(3 + 34)
((4+23) + 89)
((89 + 23) + (23 + (34+12)))

An E can be ‘(’ followed by an E
followed by ‘+’ followed by an E
followed by ‘)’

Set of expressions defined by
this grammar is a recursively-
defined set

Is language finite or infinite?
Do recursive grammars always
yield infinite languages?

Here are some illegal
expressions:
(3
3 + 4

The tokens in this grammar are
(, +,), and any integer

Parsing
10

Grammars can be
used in two ways

A grammar defines a language
(i.e., the set of properly
structured sentences)
A grammar can be used to

Example: Show that
((4+23) + 89)
is a valid expression E by
building a parse tree

E
A grammar can be used to
parse a sentence (thus,
checking if the sentence is in
the language)

To parse a sentence
is to build a parse tree

This is much like diagramming
a sentence

(E)E+

89
(E)E+

4 23

Recursive Descent Parsing
11

Idea: Use the grammar to design a recursive program to check if a sentence
is in the language
To parse an expression E, for instance

We look for each terminal (i.e., each token)
Each nonterminal (e.g., E) can handle itself by using a recursive call

The grammar tells how to write the program!The grammar tells how to write the program!
boolean parseE() {
if (first token is an integer) return true;
if (first token is ‘(‘) {

parseE();
Make sure there is a ‘+’ token;
parseE();
Make sure there is a ‘)’ token;
return true;

}
return false;

}

Java Code for Parsing E
12

public static Node parseE(Scanner scanner) {

if (scanner.hasNextInt()) {

int data = scanner.nextInt();

return new Node(data);

}

check(scanner, ’(’);

left = parseE(scanner);

check(scanner, ’+’);

right = parseE(scanner);

check(scanner, ’)’);

return new Node(left, right);

}

9/12/2010

3

Detour: Error Handling with
Exceptions

13

Parsing does two things:
It returns useful data (a parse tree)
It checks for validity (i.e., is the input a valid
sentence?)

How should we respond to invalid input?

Exceptions allow us to do this without
complicating our code unnecessarily

Exceptions
14

Exceptions are usually thrown to indicate that
something bad has happened

IOException on failure to open or read a file
ClassCastException if attempted to cast an object to
a type that is not a supertype of the dynamic type of the
object
NullPointerException if tried to dereference null
ArrayIndexOutOfBoundsException if tried to access
an array element at index i < 0 or ε the length of the array

In our case (parsing), we should throw an exception
when the input cannot be parsed

Handling Exceptions
15

Exceptions can be caught by the program
using a try-catch block
catch clauses are called exception handlers
Integer x = null;
t {try {

x = (Integer)y;

System.out.println(x.intValue());
} catch (ClassCastException e) {

System.out.println("y was not an Integer");

} catch (NullPointerException e) {
System.out.println("y was null");

}

Defining Your Own Exceptions
16

An exception is an object (like everything else
in Java)
You can define your own exceptions and throw
them
class MyOwnException extends Exception {}

...

if (input == null) {
throw new MyOwnException();

}

Declaring Exceptions
17

In general, any exception that could be thrown must be either
declared in the method header or caught

void foo(int input) throws MyOwnException {
if (input == null) {
throw new MyOwnException();

}

Note: throws means “can throw”, not “does throw”
Subtypes of RuntimeException do not have to be declared (e.g.,
NullPointerException, ClassCastException)

These represent exceptions that can occur during “normal operation of
the Java Virtual Machine”

...
}

How Exceptions are Handled
18

If the exception is thrown from inside the try clause
of a try-catch block with a handler for that
exception (or a superclass of the exception), then that
handler is executed

Otherwise, the method terminates abruptly and control is
passed back to the calling methodp g

If the calling method can handle the exception (i.e., if
the call occurred within a try-catch block with a
handler for that exception) then that handler is
executed

Otherwise, the calling method terminates abruptly, etc.

If none of the calling methods handle the exception,
the entire program terminates with an error message

9/12/2010

4

Using a Parser to Generate
Code

19

We can modify the
parser so that it
generates stack code to
evaluate arithmetic
expressions:

2 PUSH 2

Method parseE can generate
code in a recursive way:
For integer i, it returns string “PUSH ”
+ i + “\n”
For (E1 + E2),
Recursive calls for E1 and E2 return code

STOP

(2 + 3) PUSH 2
PUSH 3
ADD
STOP

Goal: Method parseE
should return a string
containing stack code for
expression it has parsed

Recursive calls for E1 and E2 return code
strings c1 and c2, respectively
For (E1 + E2), return
c1 + c2 + “ADD\n”
Top-level method should tack on a
STOP command after code received
from parseE

Does Recursive Descent Always
Work?

20

There are some
grammars that cannot
be used as the basis for
recursive descent

A trivial example (causes infinite

For some constructs, recursive
descent is hard to use
Can use a more powerful parsing
technique (there are several, but
not in this course)

p (
recursion):

S → b
S → Sa

Can rewrite grammar
S → b
S → bA
A → a
A → aA

Syntactic Ambiguity
21

Sometimes a sentence has
more than one parse tree

S → A | aaxB
A → x | aAb
B → b | bB

The string aaxbb can be parsed in two
ways

This ambiguity actually affects
the program’s meaning

How do we resolve this?
Provide an extra non-grammar rule
(e.g., the else goes with the
l t if)This kind of ambiguity

sometimes shows up in
programming languages

if E1 then if E2 then S1 else
S2

Which then does the else go
with?

closest if)
Modify the language (e.g., an if-
statement must end with a ‘fi’)
Operator precedence (e.g.
1 + 2 * 3 should always be parsed
as 1 + (2 * 3), not
(1 + 2) * 3
Other methods (e.g., Python uses
amount of indentation)

Conclusion
22

Recursion is a very powerful technique for writing
compact programs that do complex things
Common mistakes:

Incorrect or missing base cases
Subproblems must be simpler than top-level problemp p p p

Try to write description of recursive algorithm and
reason about base cases before writing code

Why?
Syntactic junk such as type declarations, etc. can create
mental fog that obscures the underlying recursive
algorithm

Best to separate the logic of the program from coding
details

Exercises
23

Think about recursive calls made to parse and
generate code for simple expressions

2
(2 + 3)
((2 + 45) + (34 + -9))

Derive an expression for the total number of calls
made to parseE for parsing an expression

Hint: think inductively

Derive an expression for the maximum number of
recursive calls that are active at any time during
the parsing of an expression (i.e. max depth of
call stack)

Exercises
24

Write a grammar and recursive program for
palindromes

mom
dad
i prefer pi
race car
murder for a jar of red rummurder for a jar of red rum
sex at noon taxes

Write a grammar and recursive program for strings
AnBn

AB
AABB
AAAAAAABBBBBBB

Write a grammar and recursive program for Java
identifiers

<letter> [<letter> or <digit>]0…N

j27, but not 2j7

