

Recursion

\square Arises in two forms in computer science
\square We'll explore both
\square Recursion as a mathematical tool for defining a function in terms of its own value in a simpler case
\square Recursion as a programming tool. You've seen this previously but we'll take it to mind-bending extremes (by the end of the class it will seem easy!)

Recursion as a math technique

\square Broadly, recursion is a powerful technique for specifying functions, sets, and programs
\square Example recursively-defined functions and programs

- factorial
- combinations
\square exponentiation (raising to an integer power)
\square Example recursively-defined sets
- grammars
- expressions
- data structures (lists, trees, ...)

The Factorial Function (n!)

\square Define $\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-1) \cdot(\mathrm{n}-2) \cdots 3 \cdot 2 \cdot 1 \quad$ read: " n factorial"

- E.g., 3! $=3 \cdot 2 \cdot 1=6$
\square By convention, $0!=1$
\square The function int \rightarrow int that gives n ! on input n is called the factorial function

The Factorial Function (n!)

$\square \mathrm{n}$! is the number of permutations of n distinct objects
\square There is just one permutation of one object. 1 ! = 1

- There are two permutations of two objects: $2!=2$

1221
\square There are six permutations of three objects: $3!=6$
$123132213 \quad 231 \quad 312321$

- If $n>0, n!=n \cdot(n-1)$!

Permutations of $\square \square \square \square$

Permutations of non-orange blocks

Each permutation of the three nonorange blocks gives four permutations when the orange block is included
\square Total number $=4 \cdot 3!=4 \cdot 6=24: 4$!

Observation

\square One way to think about the task of permuting the four colored blocks was to start by computing all permutations of three blocks, then finding all ways to add a fourth block
\square And this "explains" why the number of permutations turns out to be 4!
\square Can generalize to prove that the number of permutations of n blocks is $n!$

A Recursive Program

Execution of fact(4)

General Approach to Writing Recursive Functions

1. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g., (n-1) in our factorial example)
2. Find base case(s) - small values of n for which you can just write down the solution (e.g., $0!=1$)
3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

A cautionary note

\square Keep in mind that each instance of your recursive function has its own local variables
\square Also, remember that "higher" instances are waiting while "lower" instances run
\square Not such a good idea to touch global variables from within recursive functions
\square Legal... but a common source of errors
\square Must have a really clear mental picture of how recursion is performed to get this right!

The Fibonacci Function

\square Mathematical definition:

$$
\begin{aligned}
& \text { fib(0) }=0 \\
& \text { fib(1) }=1 \\
& \text { fib(n) }=\text { fib }(n-1)+\operatorname{fib}(n-2), n \geq 2
\end{aligned}
$$

- Fibonacci sequence: $0,1,1,2,3,5,8,13$,

```
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```


Fibonacci (Leonardo Pisano) 1170-1240?

Statue in Pisa, Italy
Giovanni Paganucci 1863

Recursive Execution

```
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

Execution of fib(4): fib(4)

One thing to notice

\square This way of computing the Fibonacci function is elegant, but inefficient
\square It "recomputes" answers again and again!
\square To improve speed, need to save known answers in a table!
\square Called a cache

Adding caching to our solution

Before:
After

Notice the development process

\square We started with the idea of recursion
\square Created a very simple recursive procedure
\square Noticed it will be slow, because it wastefully recomputes the same thing again and again
\square So made it a bit more complex but gained a lot of speed in doing so
\square This is a common software engineering pattern

Combinations

(a.k.a. Binomial Coefficients)

\square How many ways can you choose r items from a set of n distinct elements? $\binom{n}{r}$ " n choose r "
$\binom{5}{2}=$ number of 2-element subsets of $\{A, B, C, D, E\}$
2-element subsets containing $A:\binom{4}{1}$ $\{A, B\},\{A, C\},\{A, D\},\{A, E\}$
2-element subsets not containing $A:\{B, C\},\{B, D\},\{B, E\},\{C, D\},\{C, E\},\{D, E\}$
\square Therefore, $\binom{5}{2}=\binom{4}{1}+\binom{4}{2}$
\square... in perfect form to write a recursive function!

Combinations

$$
\begin{aligned}
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, \quad n>r>0 \\
& \binom{n}{n}=1 \\
& \binom{n}{0}=1 \\
& \text { Can also show that }\binom{n}{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Binomial Coefficients

> Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial power $(\mathbf{x}+\mathbf{y})^{\mathbf{n}}$:

$$
\begin{aligned}
& (x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} y^{n} \\
& \quad=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
\end{aligned}
$$

Combinations Have Two Base Cases

$$
\begin{aligned}
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0 \\
& \binom{n}{n}=1 \\
& \binom{n}{0}=1
\end{aligned}
$$

\square Coming up with right base cases can be tricky!
\square General idea:
\square Determine argument values for which recursive case does not apply
\square Introduce a base case for each one of these

Recursive Program for Combinations

$$
\begin{aligned}
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0 \\
& \left(\begin{array}{l}
n \\
n \\
n
\end{array}\right)=1 \\
& \binom{n}{0}=1
\end{aligned}
$$

static int combs(int n, int r) \{ //assume $n>=r>=0$
if (r == 0 || $r==n$) return 1; //base cases
else return combs($n-1, r$) $+\operatorname{combs}(n-1, r-1)$;
\}

Exercise for the reader (you!)

\square Modify our recursive program so that it caches results
\square Same idea as for our caching version of the fibonacci series
\square Question to ponder: When is it worthwhile to adding caching to a recursive function?

- Certainly not always...
- Must think about tradeoffs: space to maintain the cached results vs speedup obtained by having them

Positive Integer Powers

$\square a^{n}=a \cdot a \cdot a \cdots a$ (n times)
\square Alternate description:
$\square a^{0}=1$
$\square a^{n+1}=a \cdot a^{n}$
static int power(int a, int n) \{
if (n == 0) return 1;
else return a*power(a,n-1);
\}

A Smarter Version

\square Power computation:

- $a^{0}=1$
- If n is nonzero and even, $\mathrm{a}^{\mathrm{n}}=\left(\mathrm{a}^{\mathrm{n} / 2}\right)^{2}$
- If n is odd, $a^{n}=a \cdot\left(a^{n / 2}\right)^{2}$
- Java note: If x and y are integers, " x / y " returns the integer part of the quotient
\square Example:

$$
a^{5}=a \cdot\left(a^{5 / 2}\right)^{2}=a \cdot\left(a^{2}\right)^{2}=a \cdot\left(\left(a^{2 / 2}\right)^{2}\right)^{2}=a \cdot\left(a^{2}\right)^{2}
$$

Note: this requires 3 multiplications rather than 5 !
\square What if n were larger?
\square Savings would be more significant
\square This is much faster than the straightforward computation

- Straightforward computation: n multiplications
- Smarter computation: $\log (\mathrm{n})$ multiplications

Smarter Version in Java

- $n=0: a^{0}=1$
$\square n$ nonzero and even: $a^{n}=\left(a^{n / 2}\right)^{2}$
$\square \mathrm{n}$ nonzero and odd: $\mathrm{a}^{\mathrm{n}}=\mathrm{a} \cdot\left(\mathrm{a}^{\mathrm{n} / 2}\right)^{2}$
local variable
parameters
static int power(int a, int n) \{
if (n == 0) return 1;
int halfPower $=$ power(a,n/2);
if (n\%2 == 0) return halfPower*halfPower; return halfPower*halfPower*a;
\}
-The method has two parameters and a local variable -Why aren't these overwritten on recursive calls?

Implementation of Recursive Methods

\square Key idea:

- Use a stack to remember parameters and local variables across recursive calls
- Each method invocation gets its own stack frame
\square A stack frame contains storage for
- Local variables of method
- Parameters of method
\square Return info (return address and return value)
- Perhaps other bookkeeping info

Stacks

stack grows

top element	top-of-stack pointer	
2nd element		
3rd element		Like a stack of dinner plates
\ldots		You can data off first-out)
\ldots	\square	A queu
bottom element		FIFO (fir

Stack Frame

\square A new stack frame is pushed with each recursive call
\square The stack frame is popped when the method returns

- Leaving a return value (if there is one) on top of the stack

Example: power(2, 5)

How Do We Keep Track?

\square At any point in execution, many invocations of power may be in existence

- Many stack frames (all for power) may be in Stack
- Thus there may be several different versions of the variables a and n
- How does processor know which location is relevant at a given point in the computation?
- Answer: Frame Base Register
- When a method is invoked, a frame is created for that method invocation, and FBR is set to point to that frame
- When the invocation returns, FBR is restored to what it was before the invocation
- How does machine know what value to restore in the FBR?
- This is part of the return info in the stack frame

FBR

- Computational activity takes place only in the topmost (most recently pushed) stack frame

Conclusion

\square Recursion is a convenient and powerful way to define functions
\square Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:

- Reduce a big problem to smaller problems of the same kind, solve the smaller problems
\square Recombine the solutions to smaller problems to form solution for big problem
\square Important application (next lecture): parsing

