

Recursion

\square Arises in two forms in computer science
\square We'll explore both
\square Recursion as a mathematical tool for defining a function in terms of its own value in a simpler case
\square Recursion as a programming tool. You've seen this previously but we'll take it to mind-bending extremes (by the end of the class it will seem easy!)

Recursion as a math technique

\square Broadly, recursion is a powerful technique for specifying functions, sets, and programs
\square Example recursively-defined functions and programs

- factorial
- combinations
- exponentiation (raising to an integer power)
- Example recursively-defined sets
- grammars
- expressions
- data structures (lists, trees, ...)

The Factorial Function (n!)

\square Define $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1 \quad$ read: " n factorial"

- E.g., $3!=3 \cdot 2 \cdot 1=6$
- By convention, $0!=1$
\square The function int \rightarrow int that gives n ! on input n is called the factorial function

The Factorial Function (n!)

$\square \mathrm{n}$! is the number of permutations of n distinct objects

- There is just one permutation of one object. $1!=1$
- There are two permutations of two objects: $2!=2$ 1221
- There are six permutations of three objects: $3!=6$
$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$
\square If $\mathrm{n}>0, \mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-1)$!

Permutations of $\square \square \square \square$

\square Total number $=4 \cdot 3!=4 \cdot 6=24: 4!$

Observation

\square One way to think about the task of permuting the four colored blocks was to start by computing all permutations of three blocks, then finding all ways to add a fourth block
\square And this "explains" why the number of permutations turns out to be 4 !
\square Can generalize to prove that the number of permutations of n blocks is $n!$

General Approach to Writing

 Recursive Functions1. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g., (n-1) in our factorial example)
2. Find base case(s) - small values of n for which you can just write down the solution (e.g., $0!=1$)
3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

A cautionary note

\square Keep in mind that each instance of your recursive function has its own local variables
\square Also, remember that "higher" instances are waiting while "lower" instances run
\square Not such a good idea to touch global variables from within recursive functions

- Legal... but a common source of errors
\square Must have a really clear mental picture of how recursion is performed to get this right!

One thing to notice
This way of computing the Fibonacci function is elegant, but inefficient It "recomputes" answers again and again! To improve speed, need to save known answers in a table! Called a cache

Notice the development process

\square We started with the idea of recursion
\square Created a very simple recursive procedure
\square Noticed it will be slow, because it wastefully recomputes the same thing again and again
\square So made it a bit more complex but gained a lot of speed in doing so
\square This is a common software engineering pattern

Combinations
 (a.k.a. Binomial Coefficients)

- How many ways can you choose ritems from a set of n distinct elements? $\binom{n}{r}$ "n choose r " $\binom{5}{2}=$ number of 2-element subsets of $\{A, B, C, D, E\}$

2-element subsets containing A: $\binom{4}{1}$
$\{A, B\},\{A, C\},\{A, D\},\{A, E\}$
2-element subsets not containing $A:\{B, C\},\{B, D\},\{B, E\},\{C, D\},\{C, E\},\{D, E\}$
Therefore, $\binom{5}{2}=\binom{4}{1}+\binom{4}{2}$
... in perfect form to write a recursive function!
\qquad \square ?
This is a common sofware engineering patem

Binomial Coefficients

Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial power $(\mathbf{x}+\mathbf{y})^{\mathbf{n}}$:

$$
\begin{aligned}
& (x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} y^{n} \\
& \\
& =\sum_{i=0}^{n}\binom{n}{i} x^{n-1} y^{1}
\end{aligned}
$$

Combinations Have Two Base Cases

$\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0$
$\binom{n}{n}=1$.
$\binom{n}{0}=1$ \qquad Two base cases
\square Coming up with right base cases can be tricky!
\square General idea:

- Determine argument values for which recursive case does not apply
- Introduce a base case for each one of these

Recursive Program for Combinations

$$
\begin{aligned}
& \binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}, n>r>0 \\
& \binom{n}{n}=1 \\
& \binom{n}{0}=1
\end{aligned}
$$

static int combs(int n, int r) \{ //assume $n>=r>=0$ if ($r=0$ || $r==n$) return 1; //base cases else return combs($n-1, r$) $+\operatorname{combs}(n-1, r-1)$;
\}

Exercise for the reader (you!)

\square Modify our recursive program so that it caches results
\square Same idea as for our caching version of the fibonacci series
\square Question to ponder: When is it worthwhile to adding caching to a recursive function?

- Certainly not always...
- Must think about tradeoffs: space to maintain the cached results vs speedup obtained by having them

A Smarter Version

Power computation

- $\mathrm{a}^{0}=1$
- If n is nonzero and even, $a^{n}=\left(a^{n / 2}\right)^{2}$
- If n is odd, $\mathrm{a}^{\mathrm{n}}=\mathrm{a} \cdot\left(\mathrm{a}^{\mathrm{n} / 2}\right)^{2}$
- Java note: If x and y are integers, "x/y" returns the integer part of the

Example:
$a^{5}=a \cdot\left(a^{5 / 2}\right)^{2}=a \cdot\left(a^{2}\right)^{2}=a \cdot\left(\left(a^{2 / 2}\right)^{2}\right)^{2}=a \cdot\left(a^{2}\right)^{2}$
Note: this requires 3 multiplications rather than 5 !
What if n were larger?

- Savings would be more significant

This is much faster than the straightforward computation

- Straightforward computation: n multiplications
- Smarter computation: $\log (\mathrm{n})$ multiplications

Positive Integer Powers

$\square a^{n}=a \cdot a \cdot a \cdot \cdots a$ (n times)
\square Alternate description:
$\square a^{0}=1$
$\square a^{n+1}=a \cdot a^{n}$
static int power(int a, int n) \{
if ($\mathrm{n}==0$) return 1;
else return a*power(a,n-1);
\}

Smarter Version in Java

$$
\mathrm{n}=0: \mathrm{a}^{0}=1
$$

- n nonzero and even: $a^{n}=\left(a^{n / 2}\right)^{2}$
$\square \mathrm{n}$ nonzero and odd: $\mathrm{a}^{\mathrm{n}}=\mathrm{a} \cdot\left(\mathrm{a}^{\mathrm{n} / 2}\right)^{2}$
local variable
static int power(int a, int n) \{
if ($\mathrm{n}==0$) return 1 ;
int halfPower $=\operatorname{power}(a, n / 2)$;
if ($\mathrm{n} \% 2==0$) return halfPower*halfPower;
return halfPower*halfPower*a;
\}
-The method has two parameters and a local variable
-Why aren't these overwritten on recursive calls?

Implementation of Recursive Methods
Key idea: - Use a stack to remember parameters and local variables across recursive calls Each method invocation gets its own stack frame A stack frame contains storage for - Local variables of method - Parameters of method - Return info (return address and return value) - Perhaps other bookkeeping info

How Do We Keep Track?

FBR

Conclusion

\square Recursion is a convenient and powerful way to define functions
\square Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:

- Reduce a big problem to smaller problems of the same kind, solve the smaller problems
- Recombine the solutions to smaller problems to form solution for big problem
\square Important application (next lecture): parsing

