
30/08/2010

1

MORE ON SUBCLASSES, 
INHERITANCE, 
INTERFACES, ETC

Lecture 4
CS2110 – Fall ‘10

Primitive vs Reference Types
Primitive types

int, short, long, float, byte,
char, boolean, double

Efficient
1 or 2 words
Not an Object—unboxed

57abc

Reference types
Objects and arrays
String, int[], HashSet
Usually require more memory
Can have special value null
Can compare null with ==, !=
Generates NullPointerException
if you try to dereference null

•abc

nonzero

57val

nullnext

Comparing/copying primitive types

Works just as you would expect

int a, b;

if(a < b) { … }

a = b+3;

Comparing/Copying Reference 
Types

Comparing objects (or copying them) isn’t 
easy!

You need to copy them element by element
Compare objects using the “equals” method, p j g q ,
which implements “deep equality”

What you wrote How to write it correctly
"xy" == "xy" “xy".equals("xy")
"xy" == "x" + "y" "xy".equals("x" + "y")
“xy" == new String("xy“) "xy".equals(new String("xy"))

Inheritance

A subclass inherits the methods of its superclass
Example: methods of the Object superclass:

equals(), as in A.equals(B)
toString(), as in A.toString()
… others we’ll learn about later in the course

… every object thus supports toString()!

Overriding

A method in a subclass overrides a method in 
superclass if:

both methods have the same name,
both methods have the same signature (number g (
and type of parameters and return type), and
both are static methods or both are instance 
methods

Methods are dispatched according to the 
runtime type of the actual, underlying object



30/08/2010

2

Shadowing

Like overriding, but for fields instead of methods
Superclass: variable v of some type
Subclass: variable v perhaps of some other type
Method in subclass can access shadowed variable using super.v
Variable references are resolved using static binding (i.e., at g g (
compile-time), not dynamic binding (i.e., not at runtime)

Variable reference r.v uses the static (declared) type of the 
variable r, not the runtime type of the object referred to by r

Shadowing variables is bad medicine and should be avoided

… a nasty example

class A { 
int i = 1; 
int f() { return i; } 

} 
class B extends A { 

int i = 2;                                                      // Shadows variable i in class A. 
int f() { return i; } // Overrides method f in class Aint f() { return -i; }                                      // Overrides method f in class A. 

} 
public class override_test { 

public static void main(String args[]) { 
B b = new B();
System.out.println(b.i);                       // Refers to B.i; prints 2. 
System.out.println(b.f());                     // Refers to B.f(); prints -2. 
A a = (A) b;                                            // Cast b to an instance of class A. 
System.out.println(a.i);                        // Now refers to A.i; prints 1; 
System.out.println(a.f());                     // Still refers to B.f(); prints -2; 

} 
}

The “runtime” type of “a” 
is “B”!

… a nasty example

class A { 
int i = 1; 
int f() { return i; } 

} 
class B extends A { 

int i = 2;                                                      // Shadows variable i in class A. 
int f() { return i; } // Overrides method f in class Aint f() { return -i; }                                      // Overrides method f in class A. 

} 
public class override_test { 

public static void main(String args[]) { 
B b = new B();
System.out.println(b.i);                       // Refers to B.i; prints 2. 
System.out.println(b.f());                     // Refers to B.f(); prints -2. 
A a = (A) b;                                            // Cast b to an instance of class A. 
System.out.println(a.i);                        // Now refers to A.i; prints 1; 
System.out.println(a.f());                     // Still refers to B.f(); prints -2; 

} 
}

The “declared” or “static” 
type of “a” is “A”!

Interfaces
10

What is an interface?  Informally, it is a specification 
of how an object interacts with the outside world

Java has a construct called interface which is 
used formally for this purpose

an interface describes how a class interacts with its clients
method names, argument/return types, fields

Inheritance and Overriding let us 
create families of related classes

For example:
Sets
Array is a primitive reference type
ArrayList is a subclass of Set and implements the Array 
interface
HashMap is a subclass of Map and implements the ArrayHashMap is a subclass of Map and implements the Array 
interface

All of these classes support similar functionality 
because they offer the same “interface” and interpret 
the operations in the same way
But they are implemented differently in support of 
different styles of use

Java interface
12

name of interface: 
IPuzzle

a class 
implements this 
interface by 

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

y
implementing 
public instance 
methods as 
specified in the 
interface
the class may 
implement other 
methods

class IntPuzzle implements IPuzzle {
public void scramble() {...}
public int tile(int r, int c) {...}
public boolean move(char d) {...}

}



30/08/2010

3

Notes
13

An interface is not a class!
cannot be instantiated
incomplete specification

class header must assert implements I for Java to 
recognize that the class implements interface I

A class may implement several interfaces:
class X implements IPuzzle, IPod {...}

Why an interface construct?
14

good software engineering
specify and enforce boundaries between different 
parts of a team project

can use interface as a typey
allows more generic code
reduces code duplication

Why an interface construct?
15

Lots of examples in Java

Map<String Command> hMap<String, Command> h
= new HashMap<String, Command>();

List<Object> t = new ArrayList<Object>();

Set<Integer> s = new HashSet<Integer>();

Example of code duplication
16

Suppose we have two implementations of puzzles:
class IntPuzzle uses an int to hold state
class ArrayPuzzle uses an array to hold state

S th li t t t b th i l t tiSay the client wants to use both implementations
perhaps for benchmarking both implementations to pick the 
best one
client code has a display method to print out puzzles

What would the display method look like?

class Client{
IntPuzzle p1 = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
...display(p1)...display(p2)...

public static void display(IntPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

Code 
duplicated

17

y p (p ( , ));
}

public static void display(ArrayPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}
}

because
IntPuzzle
and
ArrayPuzzle
are different

Observation
18

Two display methods are needed because IntPuzzle
and ArrayPuzzle are different types, and parameter p
must be one or the other

but the code inside the two methods is identical!
code relies only on the assumption that the object p has an 
instance method tile(int,int)

Is there a way to avoid this code duplication?



30/08/2010

4

One Solution ― Abstract Classes
19 abstract class Puzzle {

abstract int tile(int r, int c);
...

}
class IntPuzzle extends Puzzle {
public int tile(int r, int c) {...}
...

}

Puzzle
code

class ArrayPuzzle extends Puzzle {
public int tile(int r, int c) {...}
...

}

public static void display(Puzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Client
code

Another Solution ― Interfaces
20 interface IPuzzle {

int tile(int r, int c);
...

}
class IntPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}

Puzzle
code

class ArrayPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Client
code

21

IPuzzle

IntPuzzle ArrayPuzzle

interface names can be used in type declarations
– IPuzzle p1, p2;

a class that implements the interface is a subtype of the 
interface type

– IntPuzzle and ArrayPuzzle are subtypes of IPuzzle
– IPuzzle is a supertype of IntPuzzle and ArrayPuzzle

22

IPuzzle IPod IRon

AClass BClass

Interfaces

Classes

Unlike classes, types do not form a tree!
a class may implement several interfaces
an interface may be implemented by several 
classes

Extending a Class
vs

Implementing an Interface
23

A class can 
implement man interfaces b timplement many interfaces, but
extend only one class

To share code between two classes
put shared code in a common superclass
interfaces cannot contain code

Static vs Dynamic Types
24

Every variable (more generally, every expression that 
denotes some kind of data) has a static* or compile-
time type

derived from declarations – you can see it
known at compile time, without running the program
does not changedoes not change

Every object has a dynamic or runtime type
obtained when the object is created using new
not known at compile time – you can’t see it

* Warning!  No relation to Java keyword static



30/08/2010

5

Example
25

int i = 3, j = 4;

Integer x = new Integer(i+3*j-1);

System.out.println(x.toString());

• static type of the variables i,j and the expression i+3*j-1 is int

• static type of the variable x and the expressionyp p
new Integer(i+3*j-1) is Integer

• static type of the expression x.toString() is String (because 
toString() is declared in the class Integer to have return type 
String)

• dynamic type of the object created by the execution of new 
Integer(i+3*j-1) is Integer

Reference vs Primitive Types26

Reference types
classes, interfaces, arrays
E.g.: Integer

x:

(Integer)
int value: 13
String toString()

Primitive types
int, long, short, byte, boolean, char, float, double

String toString()
...

13
x:

Why Both int and Integer?
27

Some data structures work only with reference types 
(Hashtable, Vector, Stack, ...)

Primitive types are more efficient
for (int i = 0; i < n; i++) {...}

Upcasting and Downcasting
28

Applies to reference types only
Used to assign the value of an expression of one (static) 
type to a variable of another (static) type

upcasting: subtype supertype
downcasting: supertype subtype

A crucial invariant:

If during execution, an expression E is ever evaluated and its value is an 
object O, then the dynamic type of O is a subtype of the static type of E.

Upcasting
29

Example of upcasting: 

static type of expression on rhs is Integer
static type of variable x on lhs is Object

Object x = new Integer(13);

static type of variable x on lhs is Object
– Integer is a subtype of Object, so this is an upcast

static type of expression on rhs must be a subtype of 
static type of variable on lhs – compiler checks this

upcasting is always type correct – preserves the 
invariant automatically

Downcasting
30

Example of downcasting: 

static type of y is Object (say)

Integer x = (Integer)y;

static type of x is Integer
static type of expression (Integer)y is Integer

– Integer is a subtype of Object, so this is a downcast

In any downcast, dynamic type of object must be a 
subtype of static type of cast expression
runtime check, ClassCastException if failure
needed to maintain invariant (and only time it is 
needed)



30/08/2010

6

Some type checking can only be done at runtime
31

void bar() {
foo(new Integer(13));

}

…. because dynamic type of object may not 
be known at compile time

}

void foo(Object y) {
int z = ((Integer)y).intValue();
...

}

String(“x”)

Upcasting with Interfaces
32

Java allows up-casting:
IPuzzle p1 = new ArrayPuzzle();
IPuzzle p2 = new IntPuzzle();

Static types of right-hand side expressions are yp g p
ArrayPuzzle and IntPuzzle, resp.

Static type of left-hand side variables is IPuzzle

Rhs static types are subtypes of lhs static type, so this is 
ok   

Why Upcasting?
33

Subtyping and upcasting can be used to avoid code 
duplication
Puzzle example: you and client agree on interface 
IPuzzle

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

Solution
34 interface IPuzzle {

int tile(int r, int c);
...

}
class IntPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}

Puzzle
code

class ArrayPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Client
code

Method Dispatch
35

Whi h th d i i k d?

public static void display(IPuzzle p) {
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)

System.out.println(p.tile(row,col));
}

Which tile method is invoked?
depends on dynamic type of object p (IntPuzzle
or ArrayPuzzle)
we don't know what it is, but whatever it is, we 
know it has a tile method (since any class that 
implements IPuzzle must have a tile method)

Method Dispatch
36

public static void display(IPuzzle p) {
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)

System.out.println(p.tile(row,col));
}

Compile-time check: does the static type of p
(namely IPuzzle) have a tile method with 
the right type signature?  If not → error
Runtime: go to object that is the value of p, 
find its dynamic type, look up its tile method
The compile-time check guarantees that an 
appropriate tile method exists



30/08/2010

7

Note on Casting
37

Up- and downcasting merely allow the 
object to be viewed at compile time as a 
different static type
Important: when you do a cast either up orImportant: when you do a cast, either up or 
down, nothing changes

not the dynamic type of the object
not the static type of the expression

Another Use of Upcasting
38

Heterogeneous Data Structures

Example:
IPuzzle[] pzls = new IPuzzle[9];[] p [ ]
pzls[0] = new IntPuzzle();
pzls[1] = new ArrayPuzzle();

expression pzls[i] is of type IPuzzle
objects created on right hand sides are of 
subtypes of IPuzzle

Java instanceof
39

Example:
if (p instanceof IntPuzzle) {...}

true if dynamic type of p is a subtype of 
IntPuzzle

usually used to check if a downcast will succeed

When is this useful?
Enables us to write “reflexive” code: software that 
operates in very general ways and customizes its 
behavior based on the types of objects it “observes”

Example
40

void twist(IPuzzle[] pzls) {

for (int i = 0; i < pzls length; i++) {

• suppose twist is a method implemented 
only in IntPuzzle

for (int i = 0; i < pzls.length; i++) {

if (pzls[i] instanceof IntPuzzle) {

IntPuzzle p = (IntPuzzle)pzls[i];

p.twist();

}

}

}

Avoid Useless Downcasting
41

void moveAll(IPuzzle[] pzls) {

for (int i = 0; i < pzls.length; i++) {

if (pzls[i] instanceof IntPuzzle)

((IntPuzzle)pzls[i]).move("N");

bad

else ((ArrayPuzzle)pzls[i]).move("N");

}}

void moveAll(IPuzzle[] pzls) {

for (int i = 0; i < pzls.length; i++)

pzls[i].move("N");

}

good

Subinterfaces
42

Suppose you want to extend the interface to 
include more methods

– IPuzzle: scramble, move, tile
– ImprovedPuzzle: scramble, move, tile, 
samLoyd

Two approaches
start from scratch and write an interface
extend the IPuzzle interface



30/08/2010

8

43

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

interface ImprovedPuzzle extends IPuzzle {
void samLoyd();

}

• IPuzzle is a superinterface of ImprovedPuzzle
• ImprovedPuzzle is a subinterface of IPuzzle
• ImprovedPuzzle is a subtype of IPuzzle
• An interface can extend multiple superinterfaces
• A class that implements an interface must implement all methods declared 

in all superinterfaces

44
D

E F

G

A

B
C

I

interface C extends A,B {...}
class F extends D implements A {...}
class E extends D implements A,B {...}

Interfaces Classes

Conclusion
45

Relationships between classes are a “tool” in Java
This tool lets us, for example, talk about “Living creatures”, “all 
animals” “animals in the Bronx zoo”, “Lenny the Lion”, etc.

Java is sophisticated about these relationships: subclasses, 
inheritance, interfaces, overriding, shadowing…  We need to 
understand these mechanisms to use Java well.

But we also need to use them carefully!
Very easy to create confusing situations!


